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PREFACE 
In response to Air Force Secretary James G. Roche’s charge to reinvigorate the systems 

engineering profession, the Air Force Institute of Technology (AFIT) undertook a broad 
spectrum of initiatives that included creating new and innovative instructional material.  The 
Institute envisioned case studies on past programs as one of these new tools for teaching the 
principles of systems engineering. 

Four case studies, the first set in a planned series, were developed with the oversight of 
the Subcommittee on Systems Engineering to the Air University Board of Visitors.  The 
Subcommittee includes the following distinguished individuals: 

Chairman 

Dr. Alex Levis, AF/ST 

Members 

Brigadier General Tom Sheridan, AFSPC/DR 
Dr. Daniel Stewart, AFMC/CD 
Dr. George Friedman, University of Southern California 
Dr. Andrew Sage, George Mason University 
Dr. Elliot Axelband, University of Southern California 
Dr. Dennis Buede, Innovative Decisions Inc. 
Dr. Dave Evans, Aerospace Institute 

Dr. Levis and the Subcommittee on Systems Engineering crafted the idea of publishing 
these case studies, reviewed several proposals, selected four systems as the initial cases for 
study, and continued to provide guidance throughout their development.  The Subcommittee’s 
leading minds in systems engineering have been a guiding force to charter, review, and approve 
the work of the authors.  The four case studies produced in this series are the C-5 Galaxy, the F-
111, the Hubble Space Telescope, and the Theater Battle Management Core System.   
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The views expressed in this Case Study are those of the author(s) and do not reflect the 
official policy or position of the United States Air Force, the Department of Defense, or the 

United States Government. 
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FOREWORD 
At the direction of the Secretary of the Air Force, Dr. James G. Roche, the Air Force 

Institute of Technology (AFIT) established a Center for Systems Engineering (CSE) at its 
Wright-Patterson AFB, OH, campus in 2002.  With academic oversight by a Subcommittee on 
Systems Engineering, chaired by Air Force Chief Scientist Dr. Alex Levis, the CSE was tasked 
to develop case studies focusing on the application of systems engineering principles within 
various aerospace programs.  At a May 2003 meeting, the Subcommittee reviewed several 
proposals and selected the Hubble Telescope (space system), Theater Battle Management Core 
System (complex software development), F-111 fighter (joint program with significant 
involvement by the Office of the Secretary of Defense), and C-5 cargo airlifter (very large, 
complex aircraft).  The committee drafted an initial case outline and learning objectives, and 
suggested the use of the Friedman-Sage Framework to guide overall analysis. 

The CSE contracted for management support with Universal Technology Corporation 
(UTC) in July 2003.  Principal investigators for the four cases included Mr. John Griffin for the  
C-5A, Dr. G. Keith Richey for the F-111, Mr. James Mattice for the Hubble Space Telescope, 
and Mr. Josh Collens from The MITRE Corporation for the Theater Battle Management Core 
System effort. 

The Department of Defense continues to develop and acquire joint complex systems that 
deliver needed capabilities demanded by our warfighters.  Systems engineering is the technical 
and technical management process that focuses explicitly on delivering and sustaining robust, 
high-quality, affordable products.  The Air Force leadership, from the Secretary of the Air Force, 
to our Service Acquisition Executive, through the Commander of Air Force Materiel Command, 
has collectively stated the need to mature a sound systems engineering process throughout the 
Air Force. 

These cases will support academic instruction on systems engineering within military 
service academies and at both civilian and military graduate schools.  Plans exist for future case 
studies focusing on other areas.  Suggestions have included various munitions programs, Joint 
service programs, logistics-led programs, science and technology/laboratory efforts, additional 
aircraft programs such as the B-2 bomber, and successful commercial systems. 

As we uncovered historical facts and conducted key interviews with program managers 
and chief engineers, both within the government and those working for the various prime and 
subcontractors, we concluded that systems programs face similar challenges today.  Applicable 
systems engineering principles and the effects of communication and the environment continue 
to challenge our ability to provide a balanced technical solution.  We look forward to your 
comments on this case study and the others that follow. 

 

 

 MARK K. WILSON, SES 

 Director, Center for Systems Engineering 
 Air Force Institute of Technology 
 http://cse.afit.edu/ 
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EXECUTIVE SUMMARY 
The Theater Battle Management Core System (TBMCS) is an integrated air command 

and control (C2) system that performs standardized, secure, automated air battle planning and 
execution management for Air Force, multi-service, and allied commanders in theaters of 
operation worldwide.  TBMCS provides the means to plan, direct, and control all theater air 
operations and to coordinate with land, maritime, and special operations elements.  It is deployed 
at C2 nodes at national, force and wing/unit-level elements.  TBMCS operates in support of 
planners and decision makers at, and below, the level of Joint Force Air Component 
Commander.  The system is modular and scalable for air, land, or sea transport and the deployed 
configurations can be tailored to meet a particular contingency.   

This case study identifies and assesses the systems engineering process used by the Air 
Force and its prime contractor, Lockheed Martin.  It describes the systems engineering process 
used from 1995 to 2000 to produce the first version of TBMCS (V1.0.1).  The case study 
examines in detail five key systems engineering learning principles:  

LP 1, Requirements Definition and Management.  The government did not produce a 
Concept of Operations, key operational performance parameters, or a system 
specification for the contractor.  The contractor was responsible for generating a 
system segment specification that had performance measures as goals, but not testable 
requirements.  The government did produce a technical requirements document that 
defined a technical approach and levied certain standards on the contractor.  There 
was no firm baseline for operational and system requirements from which the system 
could be built and tested.  The requirements baseline was volatile up to system 
acceptance, which took place after TBMCS passed operational test and evaluation.   

LP 2, System Architecture.  The system architecture was defined at too high a level, 
which had a tremendous impact on system design and development.  The 
government’s mandates for software reuse and use of commercial software products 
were often contradictory and problematic for the system development.  The layered 
system architecture did support system evolution and migration to modern 
technologies. 

LP 3, System/Subsystem Design.  The system and subsystem design was severely 
hampered by the complexity of legacy applications, misunderstanding of the maturity 
and complexity of commercial and third party software products, and a lack of 
understanding of how the system would be employed by the user.   

LP 4, System Integration.  Systems and interface integration was highly complex.  The 
system integration was very difficult because of the lack of detail in the system 
architecture and the mandate to use government-furnished equipment that was not 
necessarily compatible with commercial off-the-shelf products.  Integrating third 
party software products was an arduous process and required extensive oversight.  
The external system interfaces were not managed and were often impossible to test at 
the contractor’s facility. 

LP 5, Validation and Verification.  The lack of a firm requirements baseline made 
validation and verification very difficult.  The program was schedule driven and often 
ran parallel test processes without clear measures of success.  Not being able to 
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replicate the operational environment prior to acceptance test created severe 
problems. 

The lessons learned from TBMCS can be directly applied to other software-intensive 
programs that require the integration of vast numbers of third-party products with government-
furnished equipment (GFE), such as hardware and communications.  The key lesson is that there 
is no substitute for a well-defined systems engineering process.  In the case of TBMCS, external 
influences drove a relaxation of discipline and rigor in the systems engineering process.  In fact, 
the need for rigor and discipline in the process is even greater when a program lacks sufficient 
detail in the requirements, architecture, and system design, or when the contractor and 
government underestimate the complexity of software reuse and third-party integration.  This 
was demonstrated by TBMCS in delivering the initial system (V1.0.1) in 2000, five years after 
contract award.  The acquisition strategy of giving the contractor total system performance 
responsibility when over 90% of the program content is government-furnished equipment is 
fundamentally flawed.  The contractor cannot be held accountable for performance if the 
contractor does not control all of the system components that affect performance.  Perhaps the 
lack of formal requirements made the approach used – defining performance parameters as goals 
instead of requirements – the only possible approach in this particular case, but it should 
certainly not be adopted by other programs as a standard.   

The lessons learned from the difficulty of fielding V1.0.1 had a very positive impact on 
the program’s current systems engineering environment.  TBMCS systems engineering processes 
have evolved to become mature and repeatable.  The operational capability of TBMCS in 
Operations Enduring Freedom and Iraqi Freedom demonstrates the success of the current 
approach, as does the contractor’s ability to field four subsequent releases in the short span of 
three years since the release of V1.0.1.  Appendix 3 provides a detailed program history.   

The foundation of the case study is the Friedman-Sage matrix [1], which shows the nine 
primary phases/functions of system development and the individual and shared responsibilities 
of the government and the contractor.  This case study describes a matrix specific for TBMCS 
that was constructed on the basis of the published literature and the authors’ interviews of the 
key participants supporting the program.  The matrix illustrates the unique successes and failures 
in the application of the systems engineering process to TBMCS.  It should be noted that all nine 
Friedman-Sage processes are now shared between the government and contractor; the degree of 
responsibility varies for each process, but the overall process is orchestrated as a team approach. 
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1.0 SYSTEMS ENGINEERING PRINCIPLES 

1.1 General Systems Engineering Process 

1.1.1 Introduction 
The Department of Defense continues to develop and acquire joint systems and to deliver 

needed capabilities to the warfighter.  With a constant objective to improve and mature the 
acquisition process, it continues to pursue new and creative methodologies to purchase these 
technically complex systems.  A sound systems engineering process, focused explicitly on 
delivering and sustaining robust, high-quality, affordable products that meet the needs of 
customers and stake holders must continue to evolve and mature.  Systems engineering is the 
technical and technical management process that results in delivered products and systems that 
exhibit the best balance of cost and performance.  The process must operate effectively with 
desired mission-level capabilities, establish system-level requirements, allocate these down to the 
lowest level of the design, and ensure validation and verification of performance, meeting cost 
and schedule constraints.  The systems engineering process changes as the program progresses 
from one phase to the next, as do the tools and procedures.  The process also changes over the 
decades, maturing, expanding, growing, and evolving from the base established during the 
conduct of past programs.  Systems engineering has a long history.  Examples can be found 
demonstrating a systemic application of effective engineering and engineering management, as 
well as poorly applied, but well defined processes.  Throughout the many decades during which 
systems engineering has emerged as a discipline, many practices, processes, heuristics, and tools 
have been developed, documented, and applied. 

Several core lifecycle stages have surfaced as consistently and continually challenging 
during any system program development.  First, system development must proceed from a well-
developed set of requirements.  Regardless of overall waterfall or evolutionary acquisition 
approach, the system requirements must flow down to all subsystems and lower level 
components.  System requirements need to be stable, balanced and must properly reflect all 
activities in all intended environments.  

Next, the system planning and analysis occur with important tradeoffs and a baseline 
architecture developed.  These architectural artifacts can depict any legacy system modifications, 
introduction of new technologies and overall system-level behavior and performance.  Modeling 
and simulation are generally employed to organize and assess alternatives at this introductory 
stage.  System and subsystem design follows the functional architecture.  Either newer object-
oriented analysis and design or classic structured analysis using functional decomposition and 
information flows/ data modeling occurs.  Design proceeds logically using key design reviews, 
tradeoff analysis, and prototyping to reduce any high-risk technology areas.   

Important to the efficient decomposition and creation of the functional and physical 
architectural designs are the management of interfaces and integration of subsystems.  This is 
applied to subsystems within a system, or across large, complex systems of systems.  Once a 
solution is planned, analyzed, designed and constructed, validation and verification take place to 
ensure satisfaction of requirements.  Definition of test criteria, measures of effectiveness (MOEs) 
and measures of performance (MOPs), established as part of the requirements process well 
before any component/ subsystem assembly, takes place. 
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There are several excellent representations of the systems engineering process presented 
in the literature.  These depictions present the current state of the art in the maturity and 
evolution of the systems engineering process.  One can find systems engineering process 
definitions, guides and handbooks from the International Council on Systems Engineering 
(INCOSE), European Industrial Association (EIA), Institute of Electrical and Electronics 
Engineers (IEEE), and various Department of Defense (DoD) agencies and organizations.  They 
show the process as it should be applied by today’s experienced practitioner.  One of these 
processes, long used by the Defense Acquisition University (DAU), is depicted by Figure 1-1.  It 
should be noted that this model is not accomplished in a single pass.  Alternatively, it is an 
iterative and nested process that gets repeated at low and lower levels of definition and design.   

 
Figure 1-1.  The Systems Engineering Process as Presented by the 

Defense Acquisition University 

1.1.2 Evolving Systems Engineering Process 
The DAU model, like all others, has been documented in the last two decades, and has 

expanded and developed to reflect a changing environment.  Systems are becoming increasingly 
complex internally and more interconnected externally.  The process used to develop the aircraft 
and systems of the past was a process effective at the time.  It served the needs of the 
practitioners and resulted in many successful systems in our inventory.  Notwithstanding, the 
cost and schedule performance of the past programs are fraught with examples of some well-
managed programs and ones with less stellar execution.  As the nation entered the 1980s and 
1990s, large DoD and commercial acquisitions were overrunning costs and behind schedule.  
The aerospace industry and its organizations were becoming larger and were more 
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geographically and culturally distributed.  The systems engineering process, as applied within the 
confines of a single system and a single company, is no longer the norm. 

Today, many factors overshadow new acquisition, including system-of-systems (SoS) 
context, network centric warfare and operations, and the rapid growth in information technology.  
These factors have driven a new form of emergent systems engineering, which focuses on certain 
aspects of our current process.  One of these increased areas of focus resides in the architectural 
definitions used during system analysis.  This process will be differentiated by greater reliance 
on reusable, architectural views describing the system context and concept of operations, 
interoperability, information and data flows and network service-oriented characteristics.  The 
DoD has recently made these architectural products, described in the DoD Architectural 
Framework (DoDAF), mandatory to enforce this new architecture-driven systems engineering 
process throughout the acquisition lifecycle.   

1.1.3 Case Studies 
The systems engineering process to be used in today’s complex system-of-systems 

projects is a process matured and founded on the principles of systems developed in the past.  
The examples of systems engineering used on other programs, both past and present, provide a 
wealth of lessons to be used in applying and understanding today’s process.  It was this thinking 
that led to the construction of the four case studies released in this series. 

The purpose of developing detailed case studies is to support the teaching of systems 
engineering principles.  They will facilitate learning by emphasizing to the student the long-term 
consequences of the systems engineering and programmatic decisions on program success.  The 
systems engineering case studies will assist in discussion of both successful and unsuccessful 
methodologies, processes, principles, tools, and decision material to assess the outcome of 
alternatives at the program/system level.  In addition, the importance of using skills from 
multiple professions and engineering disciplines and collecting, assessing, and integrating varied 
functional data will be emphasized.  When they are taken together, the student is provided real-
world, detailed examples of how the process attempts to balance cost, schedule and performance.   

The utilization and misutilization of systems engineering learning principles will be 
highlighted, with special emphasis on the conditions that foster and impede good systems 
engineering practice.  Case studies should be used to illustrate both good and bad examples of 
acquisition management and learning principles, to include whether: 

• Every system provides a balanced and optimized product to a customer 
• Effective Requirements analysis was applied 
• Consistent and rigorous application of systems engineering Management standards 

was applied 
• Effective Test planning was accomplished 
• There were effective major Technical program reviews 
• Continuous Risk assessments and management was implemented 
• There were reliable Cost estimates and policies 
• They used disciplined application of Configuration Management 
• A well defined System boundary was defined 
• They used disciplined methodologies for complex systems  
• Problem solving incorporated understanding of the System within bigger environment 

(customer’s customer) 
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The systems engineering process transforms an operational need into a set of system 
elements.  These system elements are allocated and translated by the systems engineering 
process into detailed requirements.  The systems engineering process, from the identification of 
the need to the development and utilization of the product, must continuously integrate and 
balance the requirements, cost, and schedule to provide an operationally effective system 
throughout its life cycle.  Case studies should also highlight the various interfaces and 
communications to achieve this optimization, which include: 

• The program manager/systems engineering interface essential between the 
operational user and developer (acquirer) to translate the needs into the performance 
requirements for the system and subsystems. 

• The government/contractor interface essential for the practice of systems engineering 
to translate and allocate the performance requirements into detailed requirements. 

• The developer (acquirer)/User interface within the project, essential for the systems 
engineering practice of integration and balance. 

The systems engineering process must manage risk, known and unknown, as well as 
internal and external.  This objective will specifically capture those external factors and the 
impact of these uncontrollable influences, such as actions of Congress, changes in funding, new 
instructions/policies, changing stakeholders or user requirements or contractor and government 
staffing levels. 

Lastly, the systems engineering process must respond to “Mega-Trends” in the systems 
engineering discipline itself, as the nature of systems engineering and related practices do vary 
with time. 

1.1.4 Framework for Analysis 
The case studies will be presented in a format that follows the learning principles 

specifically derived for the program, but will utilize the Friedman-Sage framework to organize 
the assessment of the application of the systems engineering process.  The framework and the 
derived matrix can play an important role in developing case studies in systems engineering and 
systems management, especially case studies that involve systems acquisition.  The framework 
presents a nine row by three column matrix shown in Table 1-1.   

Table 1-1.  A Framework of Key Systems Engineering Concepts and Responsibilities 

Concept Domain Responsibility Domain 
 1.  Contractor 

Responsibility 
2.  Shared 

Responsibility 
3.  Government 
Responsibility 

A. Requirements Definition and 
Management 

   

B. Systems Architecting and 
Conceptual Design 

   

C. System and Subsystem Detailed 
Design and Implementation 

   

D. Systems and Interface Integration    
E. Validation and Verification    
F. Deployment and Post Deployment    
G. Life Cycle Support    
H. Risk Assessment and Management     
I. System and Program Management    
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Six of the nine concept domain areas in Table 1-1 represent phases in the systems 
engineering lifecycle: 

A. Requirements Definition and Management 

B. Systems Architecting and Conceptual Design 

C. Detailed System and Subsystem Design and Implementation 

D. Systems and Interface Integration 

E. Validation and Verification 

F. System Deployment and Post Deployment 

Three of the nine concept areas represent necessary process and systems management 
support: 

G. Life Cycle Support 

H. Risk management 

I. System and Program Management 

While other concepts could be have been identified, the Framework suggests these nine 
are the most relevant to systems engineering in that they cover the essential life cycle processes 
in systems acquisition and the systems management support in the conduct of the process.  Most 
other concept areas that were identified during the development of the matrix appear to be 
subsets of one of these.  The three columns of this two-dimensional framework represent the 
responsibilities and perspectives of government and contractor, and the shared responsibilities 
between the government and the contractor.     

The important feature of the Friedman-Sage framework is the matrix.  The systems 
engineering case studies published by AFIT employ the Friedman-Sage construct and matrix as 
the baseline assessment tools to evaluate the conduct of the systems engineering process for the 
topic program.  The Friedman Sage matrix is not a unique systems engineering applications tool 
per se, but rather a disciplined approach to evaluate the systems engineering process, tools, and 
procedures as applied to a program.   

The Friedman-Sage matrix is based on two major premises as the founding objectives: 

• In teaching systems engineering, case studies can be instructive in that they relate 
aspects of the real world to the student to provide valuable program experience and 
professional practice to academic theory.   

• In teaching systems engineering in DoD, there has previously been a little distinction 
between duties and responsibilities of the government and industry activities.  More 
often than not, the government role in systems engineering is the role as the 
requirements developer.   

1.2 TBMCS Major Learning Principles 
Table 1-2 depicts the Friedman-Sage matrix summarizing the Theater Battle Management 

Core System (TBMCS).  The highlighted cells are the key processes this case study will address.  
This section will give a brief overview of the systems engineering processes that will serve as the 
key learning points.   
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LP 1, The requirements process for producing the first release of TBMCS was broken.  
The user and acquisition communities never were on the same page.  The users of the system did 
not produce an Operational Requirements Document (ORD); rather, they told the acquisition 
program to use the existing requirements for the legacy system [3].  In turn, the acquisition 
community, knowing the legacy requirements were not sufficient, produced a Technical 
Requirements Document (TRD) that described the technical strategy for TBMCS and formed the 
basis for the contractor to develop the system-level specification.  The three sets of documents 
did not align and as a result there were no performance requirements; instead, they were 
established as goals.  The user also did not develop a concept of operations (CONOPS) 
describing how the system was to be used, and the contractor did not develop a concept of 
employment (CONEMP).   

LP 2, The system architecture was initially defined at too high a level, thus impacting the 
design and development of the system.  The contractor was constrained by a lack of requirements 
and by government mandates to use both government and commercial software and hardware 
products.  The contractor had defined a layered approach and adopted the Common Object 
Request Broker (CORBA) as middleware, but limited understanding of the technology and 
insufficiently detailed definition of the interfaces had tremendous impact on the development and 
integration schedule [4]. 

LP 3, The system and subsystem design was severely hampered by the complexity of 
legacy applications, misunderstanding of the maturity and complexity of commercial and third 
party software products, and the lack of understanding of how the system would be used and 
employed by the user.  In addition the lack of detail and documentation had significant impacts 
on system design and test.  The major results were schedule slippages and a reformed acquisition 
process.  The impacts on the program affected the schedule, cost, and performance.   

LP 4, Integration for a system of this complexity was very difficult.  Integration was 
required in three areas:  applications, external interfaces, and databases.  Integrating applications 
proved very expensive in terms of cost and schedule.  A constraint was the directed reuse of 
software at both the application and infrastructure layers, as defined in the TRD [5].  The intent 
was to build a common software infrastructure with open interfaces that would allow third party 
applications to plug in and play.  For such an implementation to work the interfaces must define 
the inputs and outputs in sufficient detail, and the third party must be willing to modify its 
product.  This approach is very difficult to implement, especially when the contractor does not 
own or control the products.  Another influence was that the user dictated functionality on the 
basis of concept demonstrations.  The products were never mature and cost millions of dollars to 
fix and fit into the baseline.   

The contractor’s software development kit was immature and difficult for subcontractors 
to use and implement.  TBMCS has over 64 external interfaces.  The contractor was not able to 
simulate and or exercise those interfaces until system test.  The other major issue was 
configuration control of the interfaces:  formal agreements were not always in place and changes 
were prevalent.  Integration with the intelligence database was very difficult.  The baseline 
continued to move and the interfaces to the applications were troublesome.  The major constraint 
was the impossibility of locking down the databases and interfaces, because once TBMCS 
became operational in the field it had be interoperable with other systems.  Making changes at 
the last minute prior to an operational test affected other parts of the system and forced a great 
deal of regression testing, resulting in cost increases and schedule slippages. 
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LP 5, Testing on TBMCS was problematic.  There was tremendous pressure to field 
TBMCS as the system of record for the year 2000, but the system was not ready for test and all 
the test planning was bypassed.  Also, without firm requirements, it was difficult to ascertain 
what the pass/fail criterion was.  The testing process was parallel and tests overlapped without 
sufficient time to fix the problems identified.  A major constraint was the inability to test in an 
environment that represents the operational environment.  Also, not having a CONEMP drove 
test planning to define tests that did not reflect the operational use.  As a result, a latent design 
flaw was not discovered until operational test, causing the program to slip six months. 

Table 1-2.  A Framework for Systems Engineering Concept and Responsibility Domains [2] 

Concept Domain Responsibility Domain 
 1.  SE 

Contractor 
Responsibility 

2.  Shared Responsibility 3.  Government 
Responsibility 

A. Requirements Definition and 
Management 

  LP 1, Requirements 
Definition and Management 

B. Systems Architecting and 
Conceptual Design 

 LP 2, System Architecture  

C. System and Subsystem Detailed 
Design and Implementation 

 LP 3, System/Subsystem 
Design 

 

D. Systems and Interface Integration LP 4, System 
Integration 

  

E. Validation and Verification  LP 5, Validation and 
Verification 

 

F. Deployment and Post Deployment    
G. Life Cycle Support    
H. Risk Assessment and Management     
I. System and Program Management    
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2.0 SYSTEM DESCRIPTION 
The Theater Battle Management Core System (TBMCS) is an integrated air command 

and control (C2) system that performs standardized, secure, automated air battle planning and 
execution management for Air Force, multi-service, and allied commanders in theaters of 
operation worldwide.  It is deployed at C2 nodes at national-, force-, and wing-/unit-level 
elements in support of planners and decision makers at and below the Joint Force Air 
Component Commander (JFACC) level.  TBMCS encompasses hardware, software, 
communications links, spares, personnel, training, and other resources to ensure robust and 
sustainable theater air operations.  The system is modular and scalable for air, land, or sea 
transport, and its deployed configuration can be tailored to meet the requirements of the theater 
situation. 

TBMCS provides the means to plan, direct, and control all theater air operations and to 
coordinate with land, maritime, and special operations elements.  The system fully supports 
peacetime training and daily operations, as well as timely reaction to contingencies.  TBMCS 
implements interoperable functionality with other command, control, communications, 
computers, and intelligence (C4I) systems in theater air warfare. 

TBMCS has several core components, including migrating stovepipe or legacy systems 
such as the Joint Maritime Command Information System and the Contingency Theater 
Automated Planning System (CTAPS).  TBMCS complies with the Defense Information 
Infrastructure Common Operating Environment (DII COE), and includes a common operational 
picture.   

2.1 TBMCS Functional Overview 
As shown in Figure 2-1, TBMCS spans three major C4I facilities – the Air Operations 

Center (AOC), the Air Support Operations Center (ASOC), and the Unit-Level Operations 
Centers – and connects to many external theater C4I systems.  The following paragraphs 
describe the scope of automation in each of these operations centers [4]. 

Figure 2-2 depicts the functional breakdown for the AOC, ASOC, and unit-level 
operations.  The intelligence, surveillance, and reconnaissance (ISR) and system support are the 
centerpieces for all three theater elements. 

2.1.1 Air Operations Center 
The AOC, which houses the JFACC, is the top-level C4I element in TBMCS.  The AOC 

is responsible for intelligence development and theater targeting, air operations planning, 
airspace planning and control, tasking development and distribution, mission execution 
monitoring and re-planning, and force integration.  TBMCS provides data communications, 
system administration and services, and mission applications for the AOC mission. 
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Figure 2-1.  Notional Theater C4I 
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Although Figure 2-1 appears to depict the JFACC as the Air Force theater commander, 
the JFACC can come from the other military services.  In these cases, the AOC may be located at 
that service’s C2 facility.  The TBMCS functions that are designated as joint modules support the 
JFACC in joint operational environments.  Specifically, when TBMCS supports the operational 
concept of “JFACC Afloat” it supports the JFACC aboard a Navy command ship.  Regardless of 
the JFACC’s parent service, TBMCS provides remote terminal capabilities at a significant 
number of other C4I facilities to communicate C2 information.  These remote terminals are 
notional, as also indicated in Figure 2-1, and can receive, filter, and sort tasking as well as 
monitor and update mission status. 

2.1.2 Air Support Operations Center (ASOC) 
The ASOC is a specialized operations center responsible for detailed planning, 

preparation, execution, direction, and control of the air effort supporting the ground force 
commander’s maneuver objectives.  In addition to “pre-planned” air support, the ASOC also 
provides fast response to requests for immediate close air support or reconnaissance.  The ASOC 
receives and validates requests, coordinates with the approving authority, and tasks available air 
resources to meet the land component commander’s requirements.  TBMCS provides a mobile 
computer hardware configuration, data communications, and mission application software to 
assist the ASOC mission. 

2.1.3 Unit-Level Operations 
The unit level is the execution arm of TBMCS.  This level is responsible for receiving 

tasking from higher headquarters, translating the tasking into a unit flying schedule, managing 
unit-level resources to fulfill the flying schedule, executing the flying schedule, and reporting the 
results.  TBMCS provides data communications, core support, and mission application software 
for unit-level C2 and resource management missions. 

2.1.4 Joint Intelligence Center (JIC) 
The JIC is a high-level joint intelligence organization responsible for maintaining and 

disseminating information on enemy forces.  It serves as the distribution node for intelligence 
information.  TBMCS provides application functionality for the data communications, core 
support, and intelligence missions to the JIC. 

2.1.5 External Interfaces  

TBMCS interoperates with a number of other C4I and management information systems 
in the evolving theater battle management arena.  Communication with airborne platforms such 
as the Airborne Warning and Control System (AWACS) and Joint Surveillance Target Attack 
Radar System (JSTARS) takes place through the Tactical Data Information Link (TADIL) and 
Joint Tactical Information Distribution System (JTIDS) networks and a common processor.  
TBMCS receives intelligence inputs at the Secret level, and produces and disseminates 
intelligence products (orders of battle and target information) at the collateral (Secret) and/or 
Secret Releasable levels for a variety of force- and unit-level users.  This broader set of 
interfaces is depicted in Figure 2-3 [6]. 
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Figure 2-3.  TBMCS Interfaces for V1.1.3 

2.2 Air Battle Plan Rhythm 
Figure 2-4 depicts the creation and execution of the air battle plan (ABP).  It is typically a 

six-step process that takes place over a 72-hour window [7].  The steps are serial in nature but 
overlap during the 72-hour cycle.  It starts with the JFACC guidance defining the objectives and 
strategy-to-tasks for the ABP.  Intelligence analysts then generate a joint target list.  Once the 
JFACC approves the list, the AOC develops the master air attack plan, taking the available 
resources into account.  The AOC next produces an ABP from which the air tasking order (ATO) 
is created and disseminates it to the joint organizations.  Units then plan their missions to include 
all mission parameters (weapon types, assigned pilots, takeoff and landing times, routes, and 
targets).  The units execute the ABP and feed the results back into the process.  The cycle repeats 
until the JFACC objectives have been met. 
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Figure 2-4.  Air Battle Plan Process 
Three ABP cycles in various stages can execute simultaneously.  For example, the 

Combined Air Operations Center (CAOC) might be planning ABP C while developing ABP B 
and executing ABP A.  The actual implementation is much more dynamic and fluid, but the basic 
structure remains the same.  Figure 2-5 depicts the process and the overlaps.   
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Figure 2-5.  Today’s “Battle Rhythm” = 72-Hour Cycle 
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3.0 TBMCS SYSTEMS ENGINEERING LEARNING PRINCIPLES 
As the TBMCS program developed (1995–2000), roles and responsibilities shifted 

between the prime contractor, Lockheed Martin Integrated Systems and Solutions (LM-IS&S; 
hereafter referred to as LM), and the government.  They became predominantly shared functions 
after the core baseline, Version 1.0.1 (V1.0.1), passed operational test and was approved for 
system fielding in October 2000.  Table 1-2 highlights the responsibilities for the nine core 
processes. 

TBMCS was a classic example of a system-of-systems integration program subject to 
extraordinary external influences.  The original implementation strategy called for the 
government to hire a contractor to integrate legacy systems using modern commercial off-the-
shelf (COTS) information technologies.  The intent was to provide a consistent user interface, 
independent of the application, riding on a common software backplane.  It was also believed 
that the system would evolve over time and that seams between legacy systems would eventually 
disappear as the individual components merged into one integrated system.  In addition, as 
system integrator, the contractor would have total responsibility for the system and would use its 
own development processes with minimal government oversight.  Basically, this meant that the 
government identified an objective and then removed itself from active participation in achieving 
it.  This approach sounded deceptively simple and straightforward, but it proved very difficult to 
implement because of the huge number of organizational interactions, external influences, and 
constraints on the program.   

This section will analyze four systems engineering learning principles that have had 
profound impacts on the program:  requirements, system architecture/design, system integration, 
and verification and validation.  The subsection for each process will describe the specific roles, 
influences, impacts, and lessons learned.   

3.1 Learning Principle 1 – Requirements Definition and Management 
The government did not produce a Concept of Operations, key operational 
performance parameters, or a system specification for the contractor.  The 
contractor was responsible for generating a system segment specification 
that had performance measures as goals and not testable requirements.  
The government did produce a technical requirements document that 
defined a technical approach and levied certain standards on the 
contractor.  There was no firm baseline for operational and system 
requirements from which the system could be built and tested.  The 
requirements baseline was volatile up to system acceptance, which took 
place after operational test and evaluation.   

The requirements process for TBMCS V1.0.1 was profoundly flawed from the start.  The 
user and acquisition communities were never really in sync.  The acquisition community had a 
utopian vision of a single modern, integrated, joint C2 system, but had no operator requirements 
to support it; instead, the requirements were legacies from the existing systems being integrated 
into TBMCS.  TBMCS itself had no requirements and no CONOPS that described how the 
system would work as single integrated capability.  The test community and other services found 
this a major problem.  What capabilities was TBMCS supposed to provide, and how was the 
system to be used? As a result, TBMCS lacked a system specification, and system performance 
measures were merely goals rather than hard requirements.  The criteria for assessing system 
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performance became somewhat subjective and left room for interpretation.  In fact, the formal, 
documented performance was not agreed to until the operational test plan was approved.  The 
testing process was long and arduous.  In addition, the requirements were derived from legacy 
functionality and continually changed depending on which software application the government 
wanted LM to incorporate into the baseline – a critical problem in itself. 

The requirements process reflected a shared effort between the government and the 
contractor.  The chart shown in Figure 3-1 was used during the early phases of TBMCS to 
illustrate the sequence of reviews, with the notes showing government vs. contractor tasks for 
each review [4]. 
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Figure 3-1.  Version Planning Process 

Operational Requirements Process 
The operational requirements definition for TBMCS was ambiguous at best.  TBMCS is 

an Air Force-led program with significant joint service participation; thus, the requirements came 
from many sources and evolved over time (see Figure 3-2). 

Initially (1995), TBMCS followed a MIL STD-2167A type of process, starting with a 
Requirement Review Board about six weeks after contract award.  As a process improvement 
after the TBMCS core release (V1.0.1, October 2000), the Air Force established an Operational 
Requirements Working Group (ORWG) chaired by the Air Force Command, Control, 
Intelligence, Surveillance, and Reconnaissance Center (AFC2ISRC; the lead agency for the 
government’s requirements process), with representatives from the services, the system program 
office (SPO), the contractor, and the Joint Chiefs of Staff (JCS).  While this group helped to 
prioritize requirements, its main focus was on the “little r’s” for fixing legacy system problem 
reports and not on the big “R’s” for defining TBMCS requirements.   
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The operational requirements baseline did not stabilize until September 1999, four years after 
contract award.  The foundation of the operational requirements came from three legacy systems:  
those for CTAPS, the Wing Command and Control System (WCCS), and the Combat 
Intelligence System (CIS) [3].  The user, AFC2ISRC, believed that these requirements remained 
valid and that there was no need to establish a new operational requirements document (ORD).  
The user also believed the CONOPS for CTAPS was sufficient to serve as the TBMCS 
CONOPS.  The acquisition program office disagreed:  CTAPS requirements were not 
representative of what that acquisition office had in mind for TBMCS.  For example, the 
requirements described neither the deployment of the system nor the interaction among the AOC, 
ASOC, and the Unit-Level Operation Centers. 

4/30/98

C2CGC2CG

ContractorContractor

ORWGORWG

VPBVPB
JSAO
SCCB

JSAO
SCCB

AMCAMCACCACCUSAFEUSAFEPACAFPACAFHQUSAFHQUSAFAFSPCAFSPC

JCSJCS USNUSN USMCUSMC USAUSA

AFSOCAFSOC

CINCS

ESCESC NAVYNAVY JCS/J2TJCS/J2TDISADISA

FLEXTAP

TC4I DII/COE
COP

JTT

JDP
JPT

Air Operations 
Requirements

Integration

Contractor
Developed

Sub
Developed

Outside
Development InterfacesInterfaces

C2IPS
AFATDS 4/30/98

C2CGC2CGC2CGC2CG

ContractorContractor

ORWGORWG

VPBVPB
JSAO
SCCB

JSAO
SCCB

AMCAMCACCACCUSAFEUSAFEPACAFPACAFHQUSAFHQUSAFAFSPCAFSPC

JCSJCS USNUSN USMCUSMC USAUSA

AFSOCAFSOC

CINCS

ESCESC NAVYNAVY JCS/J2TJCS/J2TDISADISA

FLEXTAP

TC4I DII/COE
COP

JTT

JDP
JPT

Air Operations 
Requirements

Integration

Contractor
Developed

Sub
Developed

Outside
Development InterfacesInterfaces

C2IPS
AFATDS 4/30/98

C2CGC2CG

ContractorContractor

ORWGORWG

VPBVPB
JSAO
SCCB

JSAO
SCCB

AMCAMCACCACCUSAFEUSAFEPACAFPACAFHQUSAFHQUSAFAFSPCAFSPC

JCSJCS USNUSN USMCUSMC USAUSA

AFSOCAFSOC

CINCS

ESCESC NAVYNAVY JCS/J2TJCS/J2TDISADISA

FLEXTAP

TC4I DII/COE
COP

JTT

JDP
JPT

Air Operations 
Requirements

Integration

Contractor
Developed

Sub
Developed

Outside
Development InterfacesInterfaces

C2IPS
AFATDS 4/30/98

C2CGC2CGC2CGC2CG

ContractorContractor

ORWGORWG

VPBVPB
JSAO
SCCB

JSAO
SCCB

AMCAMCACCACCUSAFEUSAFEPACAFPACAFHQUSAFHQUSAFAFSPCAFSPC

JCSJCS USNUSN USMCUSMC USAUSA

AFSOCAFSOC

CINCS

ESCESC NAVYNAVY JCS/J2TJCS/J2TDISADISA

FLEXTAP

TC4I DII/COE
COP

JTT

JDP
JPT

Air Operations 
Requirements

Integration

Contractor
Developed

Sub
Developed

Outside
Development InterfacesInterfaces

C2IPS
AFATDS

Figure 3-2.  TBMCS Participating Organizations (circa 1998) 

Figure 3-2 shows the number of organizations involved in the TBMCS requirements 
process in the year before TBMCS underwent its first operational test and evaluation (OT&E).  
This chart illustrates how the operational user community was feeding requirements into 
TBMCS from the top down, while various functional components that were directed into the 
system simultaneously drove requirements from their existing implementations back into the 
system.  Responsibility for defining the requirements fluctuated among the Air Force major 
commands (MAJCOMs) as well as the numbered Air Forces.  There was no formal concept of 
employment.  The Tactics, Techniques, and Procedures (TTPs) were inconsistent and varied 
from theater to theater.  The joint user community, contractor, and test community never agreed 
on and formalized the measures of effectiveness (MOEs) and performance (MOPs); instead, all 
participants had their own “pet rocks.” 

15 



To gain some sort of consensus among the stakeholders, AFC2ISRC compiled the 
requirements from the three legacy ORDs into a System Version Requirements Document 
(SVRD) in January 1998.  The joint operational test community did not consider the 
requirements in the SVRD testable, because they were too detailed and it was difficult to identify 
the critical operational issues.  The test community also complained that the SVRD was not an 
ORD and there was no criterion for operational test acceptability [8]. 

In January 1999 the ORWG produced another document, called Mission Critical 
Functions (MCFs) that defined each service’s legacy MCFs [4] The test community wanted a 
still higher level of abstraction, so AFC2ISRC mapped the 45 MCFs originally identified into 
five Key Legacy Functions (KLFs).  In September 1999, six months after TBMCS failed its first 
operational test, the user community redefined the KLFs to include only 19 MCFs; the other 26 
MCFs were deemed important but not critical.  The re-scoping was intended to minimize risk 
and improve the probability of receiving a favorable fielding decision.  The fielding decision for 
TBMCS V1.0.1 was to be based on the effectiveness and suitability of the five KLFs: 

1. The capability to nominate and prioritize targets, 

2. The capability to plan and disseminate the daily ABP, 

3. The capability to receive and parse the ABP, 

4. The capability to plan a detailed flying schedule within four hours (for Air Force 
units), and  

5. The capability to monitor and control execution of the ABP. 

TBMCS demonstrated that it satisfied these KLFs at the multiservice OT&E (MOT&E) in July 
2000 and received a favorable fielding decision. 

System Requirements Process 
TBMCS was envisioned as the C2 system for theater-level air operations at both the 

operational and tactical levels of war for joint and coalition contingencies.  The program was to 
evolve by integrating three legacy systems into a single C2 system used by the joint AOC and 
the theater components.  TBMCS was to provide a common and shared air operations and 
intelligence database, as well as a common suite of tools to plan, manage, and execute the ABP, 
and was to include a common operational picture for shared situational awareness. 

Because there was no CONOPS, and the ORDs of the legacy systems did not have any 
technical performance metrics, there were no real requirements or performance baseline from 
which the Air Force could build a system specification.  The requirements were expressed in 
terms of capabilities based on legacy functionality; the tacit guideline was that functionality and 
performance should not be degraded from those of the legacy systems. 

The TBMCS System Program Director (SPD) recognized that it would be very difficult 
to produce a formal system specification, given the time constraints for releasing the request for 
proposals (RFP), and instead asked The MITRE Corporation1 to produce a technical 
requirements document (TRD) that formed the basis for the contractual requirements baseline.  

                                                 
1 MITRE operates a Federally Funded Research and Development Center (FFRDC) that serves as the 

Electronic Systems Center’s lead systems engineering support organization. 
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At the same time, leading up to the development of the TRD, the Program Executive Office 
(PEO) tasked MITRE to perform a systems engineering study of how the Air Force would 
integrate disparate legacy systems between force- and unit-level operations, and to determine if 
TBMCS could provide a common infrastructure that would allow the applications to “plug and 
play” and be shared among the services.  In essence, MITRE was asked to define the technical 
framework that would allow this integration. 

The MITRE study concluded that systems supporting air operations for the theater were 
not integrated, but exhibited considerable commonality and duplication.  Therefore, moving to a 
common set of services was technically feasible.  The study recommended the services to be 
incorporated, including messaging, databases, common operational picture, communications, and 
security [9].  MITRE’s systems engineers prescribed an object-oriented approach to encapsulate 
the legacy or third-party applications and provide a common message service via an object 
request broker.  This analysis formed the technical approach for TBMCS and was reflected in the 
TRD. 

The requirement to use government-furnished equipment (GFE) for many TBMCS 
functions had a major influence on the requirements analysis.  The government prescribed the 
use of specific hardware, which varied depending on the service branch that would use TBMCS:  
the Air Force used Sun Microsystems, the Navy used Hewlett-Packard, and the Marines used a 
combination of both.  The size of the configuration would also change according to the type of 
deployment.  The three types of deployment packages were:  Quick Response Package (QRP) – 
for human relief types of missions, Limited Response Package – for small-scale military 
operations, and Theater Response Package (TRP) – for large-scale, Desert Storm-like conflicts. 

The government also prescribed the specific software applications (COTS and 
government off-the- shelf [GOTS]) and infrastructure for TBMCS, including the mandate to use 
the DII COE as the core of the infrastructure.  To make matters worse, many of these systems 
were undergoing parallel development at the time TBMCS was being created.  This presented 
additional challenges, because it required all stakeholders to achieve a reasonable current 
baseline of the products that would be stable long enough to allow the contractor to integrate 
them into the larger TBMCS. 

Because of these multiple and often conflicting demands, TBMCS was perceived as 
being slow to adapt.  Often, this was due to the disproportionate impact of what might have 
seemed like a minor issue to an outside observer.  For example, at one point TBMCS was based 
on Solaris 2.5.1, while Sun had released Solaris 2.8 (a.k.a. Solaris 8).  The move to these new 
releases of the Sun operating system was delayed by dependencies on COE products and by the 
sheer cost of a massive upgrade of COTS products to match this new baseline. 

Another major factor affecting the requirements was database consolidation and 
compliance with the ATO message standard, the United States Message Text Format (USMTF).  
The standard covered not only the format but also the ATO functionality.  TBMCS had to 
consolidate 13 separate databases into two:  one for air operations and one for intelligence. 

The last major influence was security and coalition operations.  TBMCS had to be able to 
operate at multiple security levels and support coalition operations, meaning that the system had 
to be releasable to our coalition partners.   
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The contractor, together with the SPO engineering staff, formed a systems engineering 
working group to develop the system specification and prepare for the System Requirements 
Review (SRR).  Given the vast amount of information available during the first months of the 
TBMCS contract, the team broke down the requirements provided and performed an initial 
analysis of the candidate solutions based on specific factors, such as the COTS/GOTS products 
mandated from above.  The SRR took place in March 1996, five months after contract award, 
and the requirements baseline was then placed under configuration control and managed by a 
tool called a Requirements Traceability Matrix.  The initial System Design Review (SDR) was 
held about six months later.   

The timeline for this analysis and design phase did not permit much in the way of 
prototyping and full trade studies.  Such a fast-paced engineering process can work well for 
prototypes where an opportunity exists to revisit decisions and rework the product, but TBMCS 
was attempting to define a relatively large system of systems.  Thus, the program was forced to 
review and rework some areas based on the results of formal tests instead of feedback from 
internal activities. 

Once a baseline was established, the TBMCS program was able to move forward by 
modifying more traditional engineering processes.  Figure 3-3 shows how the team adapted an 
existing engineering process of design/development with periodic reviews to work in an 
environment where many of the component products in the system are created by organizations 
outside the prime contractor’s direct control.  During the periodic reviews the TBMCS SPO and 
its MITRE engineering team were invited to participate and to initiate additional discussions at 
an engineering level early in the Quality Points (QP) process [4]. 

The system requirements baseline was placed under LM configuration control, but the 
real baseline was the allocated baseline:  the requirements were being defined as the system was 
being built.  LM held Initial Design Evaluations to ensure understanding and gain user buy-in, 
but that was not the equivalent of formal documentation. 

The government also did not concern itself with the suitability of the system and its 
components for operational test.  The System Segment Specification (SSS) was updated 
periodically, but never really reflected the baseline; instead, it was an afterthought and lagged 
behind the current program requirements.  In addition, the government continually changed the 
allocated baseline with mandated third-party products, which did or did not reflect the agreed-to 
requirements. 
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Figure 3-3.  QP Process Flow 

Thus, the requirements process was very loose and managing expectations was extremely 
difficult.  The implications affected performance at the system-of-systems level because changes 
in the lower-level requirements did not flow back up to the system level baseline and allow LM 
to determine the overall impact.  In one case the impact only became evident in operational test, 
which revealed a major problem in the intelligence database that resulted in an eight-month 
schedule slip. 

3.2 TBMCS Learning Principle 2 – Systems Architecture  
The system architecture was defined at too high a level, which had a 
tremendous impact on system design and development.  The government’s 
mandate for a software reuse and use of commercial software products 
were contradictory and problematic for the system development.  The 
layered system architecture did support system evolution and migration to 
modern technologies. 

Responsibility for designing the system architecture for TBMCS was shared between the 
government and LM.  The key tenets for the system architecture were: 

• Permit collaborative air battle planning and execution with automated distribution,  

• Provide common situational awareness, 

• Support coalition operations, 

• Offer shared air operations and intelligence databases, 

• Ensure seamless integration between force- and unit-level operations, 
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• Operate in fixed and deployed locations, 

• Support system evolution and facilitate software application reuse – especially with 
existing legacy systems, 

• Leverage commercial hardware and software, 

• Provide a standard user interface, and  

• Operate on government-furnished hardware and communications infrastructure. 

The system employs a layered architecture and has migrated from a UNIX-based client/server to 
a PC-based, N-tiered, Web-based service-oriented architecture (SOA), as is shown in Figure 3-4 
[4]. 

LM did not develop the initial system architecture in accordance with the C4ISR 
framework, or use any automated tools to create the architecture.  The contractor did perform a 
functional decomposition, allocate functions to subcomponents, and define the interaction and 
interfaces among the components.  However, the government provided neither an operational 
architecture nor use cases to describe operations.  This definitely caused problems with 
developing a CONOPS and made it far more difficult for LM to gain a deep understanding of 
how the system would be employed.  That, in turn, resulted in a major performance flaw in the 
intelligence database that was only discovered at operational test. 

Figure 3-4.  N-Tiered Architecture 

The original architecture was at a very high level and thus left considerable room for 
interpretation, which had a lasting effect on system integration.  The software architecture was  
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very immature and was based on the DII COE segmentation process.2 In the case of TBMCS, 
segments and the database layer were to interact through a common set of Application Program 
Interfaces (APIs) or a common information service layer.  Figure 3-5 depicts the DII COE 
structure for TBMCS.  Unfortunately, as the architecture was being built, the DII COE was still 
evolving and the inter-process communication API was not well defined.  Similarly, the COTS 
products under consideration were still evolving and often did not meet performance 
requirements, especially the requirement for an automated database replication scheme.  The 
third-party applications were designed to a different set of requirements and often did not scale 
or were incompatible with current versions of the COTS software product baseline, e.g., 
Netscape browser.  Typically, TBMCS was two versions behind the commercial market 
standard. 
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Figure 3-5.  DII COE Architecture 

The operational data architecture was well defined and understood (see Figure  
3-6).  The Air Force hardware architecture was also well defined and understood, but was based 
upon outdated equipment specifications (see Figure 3-7).  However, the communications 
architecture was not well defined or understood until after the failure of the first operational test, 

                                                 
2 A segment is a solely contained software capability that can operate independently or interact with other 

segments. Segmentation imposes a set of software development rules on both legacy and newly developed software, 
with the goal of allowing applications to be easily installed and integrated with the DII COE. It also allows installed 
applications and COE components to share data [10]. 
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because the contractor was not able to test or integrate on the actual infrastructure until the 
operational test took place.  This led to a major lesson learned. 

Figure 3-6.  Data Architecture 
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Figure 3-8.  Communications Architecture 
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The initial system architecture produced by LM was conceptually sound, but lacked 
sufficient detail to enable LM to understand the issues and risks, which therefore were not 
discovered until well into the design and implementation phases of the program.  However, the 
architectural concept of layers stayed the course over time and greatly facilitated the migrati
from a client/server to an N-tiered Web-based SOA.  Keeping the data separate from the 
application and having a common infrastructure did establish a plug-and-play environment for 
application reuse.  The concept also promoted legacy isola

on 

tion, which allowed TBMCS to 

As rogram was under 
tremendou uture 
capabilities CS 
through op  feeling 
was that th BMCS was 
going through operational test, the Air Force Scientific Advisory Board performed a study on the 
future o  

 

ed 
of 

 
nt architecture has been widely accepted within 

the Dep

m (GCCS) – the 
system the Joint Force Commander uses to plan and execute a Joint Task Force (JTF) 
contingency.  The plan was to tailor the system depending on the task the user was performing, 
meaning that a menu of applications would run on a common software infrastructure that could 
be adapted to each workstation on the basis of user role or profile.  Each military service would 
provide applications from its respective domains that could be reused as part of the GCCS 
baseline.  For example, the Air Force would provide the air operations applications, while the 
Navy would provide the intelligence applications.  The applications would run on both the 

migrate to an SOA in a relatively short time.   

TBMCS went through its initial development and test phase, the p
s scrutiny for not having a “to-be” (objective) architecture or a vision for f
.  The fundamental reason was that the SPO was so focused on getting TBM
erational test that there was no money to develop a “to-be” architecture; the
ere would be no future unless TBMCS passed its operational test.  While T

f C2 and how to improve integration and interoperability.  Dr. Alex Levis, the lead on
architecture, recommended that TBMCS have a “to-be” architecture with a roadmap for evolving 
capabilities.  The recommendation was well received and funding was provided to define both an 
architecture and a roadmap.   

The resulting architecture followed the C4ISR framework and produced operational, 
system, and technical views.  A majority of the work, especially the operational views, has since
been absorbed by the AOC weapon system.  Together with the government, LM developed 
system and technical views that describe how the current system would evolve into a Web-bas
system.  The new TBMCS architecture still retains the existing databases, but is in the process 
moving the applications off UNIX workstations to Microsoft Windows and browser-based 
clients.  The architecture also uses open commercial standards for infrastructure and is migrating
away from the DII COE infrastructure.  The curre

artment of Defense (DoD) and user communities. 

3.3 Learning Principle 3 – System/Subsystem Design 
The system and subsystem design was severely hampered by the 
complexity of legacy applications, misunderstanding of the maturity and 
complexity of commercial and third party software products, and the lack 
of understanding of how the system would be used and employed by the 
user. 

The government and contractor share responsibility for the TBMCS design, which is 
based on government-directed software, hardware, and technology focus.  The design stems from 
the family-of-systems approach used on the Global Command and Control Syste
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Navy’s r 

ed 

 

roducts:  Oracle for the air operations database and Sybase for the 
intelligence database.  M was segmented under 
the DII COE concept, w ntegrated with the DII 
COE an

tion-to-infrastructure interfaces.  Figure 3-9 
depicts  

 

 GCCS-M and the Air Force’s TBMCS (the Air Force did not adopt the GCCS name fo
its force- and unit-level air operations system).   

A majority of the system design for TBMCS V1.0.1 was downward directed and bas
on existing capabilities.  V1.0.1 was a UNIX-based client/server system.  As previously noted, 
the hardware platform for the Air Force and Marines was Sun Microsystems; for the Navy it was
Hewlett-Packard.  The communications design was a closed VPN running on the Defense 
Information Systems Network (DISN).  The security design was system collateral Secret, with 
enclaves for other security levels and coalition operations.  Information System Security 
Engineer guards were used to pass data from one enclave to another.  The databases were 
relational and used COTS p

ost of the software was written in C and C++ and 
hich allows applications to be easily installed and i

d enables installed applications and COE components to share data [4]. 

Data sharing and application interfaces were accomplished through a common service 
layer called Data Access Agents (DAA).  The DAA was implemented using a Common Object 
Request Broker (CORBA):  a COTS product called ORBIX that followed the CORBA 2.0 
standard.  CORBA allows the DAA and other services to access data by using Interface 
Definition Language (IDL) scripts tailored to specific tasks.  There was also a service layer for 
application-to-application interfaces and for applica

 the service layers for the legacy applications.  Unfortunately, the technology was still
emerging and the object-oriented concept never really took hold at LM.  The IDL was difficult to
understand and implement and constantly caused problems during system integration and test 
with third-party products. 

Figure 3-9.  Legacy Application Service Layers 
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After the completion of operational test in August 2000, the Air Force exerted strong
pressure for TBMCS to migrate to PC/browser clients and become more Web focused.  The A
Force did not fully endorse the UNIX environment and wanted to use PCs as their workstations
Moreover, the DII COE and DAA were brittle and expensive to maintain:  the infrastructur
could not keep pace with the current versions of commercial information technology produ
The TBMCS design therefore evolved from a client/server to an N-tiered architecture operating 
in a Java environment, as depicted in Figure 3-10. 

The design calle

 
ir 
.  

e 
cts.  

d for migration over time, as shown in Figure 3-11.  The first major 

which ma

to Septem

portal and cr eb 

The last m

considerable com  faster rate 
with less p

Figure 3-10.  Java Environment 

change focused on moving the remote client from a UNIX client to a PC/browser user interface, 
de it possible to access the applications over the network using Java’s applet 

technology.  This implementation proved very successful for the CONUS AOC as it responded 
ber 11, 2001:  the flying units could use the browser at their home stations to view 

their assigned air defense missions. 

The next major change brought more Web capability into the AOC by standing up a 
eating an initial Java 2 Platform Enterprise Edition (J2EE) environment for W

application development, using a Web application server by BEA Systems called WebLogic.  
ajor change was to adopt the J2EE environment fully and upgrade the software 

infrastructure (i.e., the DII COE) using current commercial technologies.  Adopting open 
standards and not dictating a specific design implementation has removed many constraints and 

plexity, and has allowed the contractor to field capabilities at a much
rogram risk. 
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Figure 3-11.  Web Migration 

3.4 Learning Principle 4 – System Integration and Test 
Systems and interface integration was highly complex.  System integration 
was very difficult because of the lack of detail in the system architecture 
and the mandate to use government-furnished equipment that was not 
necessarily compatible with commercial off-the-shelf products.  
Integrating third party software products were an arduous process and 
required extensive oversight.  The external system interfaces were not 
managed and were often impossible to test at the contractor’s facility. 

Integration is one of the key systems engineering processes for TBMCS.  The system 
involves four types of integration:  (1) internal interfaces and subcomponents, (2) third-party 
applications, (3) external interfaces, and (4) databases. 

LM is not only the prime contractor and developer but also, and most important, the 
system integrator.  Ninety percent of TBMCS consists of third-party products or GFE, and a 
majority of the software is third-party or COTS.  There are 76 applications and 413 segments 
involving over 5 million lines of software and two commercial relational databases – one for air 
operations and the other for intelligence.  The system has two hardware baselines, and DISA 
runs the communications infrastructure.  Sixty-four point-to-point external interfaces have 
connectivity with TBMCS.   

As with requirement definition, the contractor and the government share responsibility for 
system integration.  Clearly the contractor has overall responsibility, but the government bears 
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responsibility as well, especially when it directs that certain products or interfaces be 
incorporated into the system baseline.  A major lesson learned from TBMCS is that if a third-
party product does not integrate well – meaning it takes more time and money than the budget 
allows – the contractor should have the option to develop its own solution.  The government, in 
turn, must provide stable interfaces and an environment that allows the contractor to test them.  
The government must also manage tight configuration of those interfaces to minimize 
interoperability problems with the system baseline.   

LM uses a highly serialized process for development and integration, as referenced in 
Figure 3-12.  LM defines the integration process in its Software Development Kit (SDK) [4]. 

Figure 3-12.  Third Party Integration Process Flow 

The SDK for third-party integration states:   

Product Integration Process Flow [Figure 3-13] illustrates the flow of 
integration activities.  The optional activities are shown with dashed lines.  
The activities are associated with a series of Quality Point (QP) product 
reviews to ensure a complete integration engineering process.  QP 
checklists define the criteria for each phase of integration.  At the time a 
product is identified for integration into TBMCS, the TBMCS 
Architecture Team will coordinate a product integration assessment.  The 
assessment consists of completing a concise questionnaire that quickly 
characterizes the product in terms of the technical qualities of the product.  
Using the integration assessment, a product integration plan is developed, 
which includes a description of the objective, scope of the integration 
effort, and a schedule of integration milestone tasks.  The completed 
questionnaire and plan are placed in the Software Development Folder 
(SDF) for the 3rd party product.  A TBMCS product integration engineer 
will be designated as the Point of Contact (POC) responsible for managing 
the integration activities. 
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The 3 rd party product provider is expected to support the QP 5/6/7/11 
events, product integration, and testing activities.  The TBMCS product 
integration engineer will coordinate with the 3 rd party product supplier to 
develop a set of specifications that will be used to verify the successful 
integration of the product (QP5 and QP6).  In order to capture the 
technical context of the product within the TBMCS system and provide a 
technical description of the product after the specifications have been 
established, a Software Design Report (SWDR) is generated, which is 
verified at the QP7.  TBMCS will also register the planned segments with 
the DII COE, if not already done.  Then, the required sections of the 
SWDR and Product Integration Questionnaire are completed to document 
the technical and implementation details in addition to identifying all of 
the products to be integrated including the COTS/GOTS/Freeware 
products.  A QP11 is conducted upon the Receipt of a 3rd party product, 
which consists of verifying the correct version of the product and 
associated documentation.  The Unit Test Cases are reviewed prior to 
Integration Testing.  The installation and configuration steps associated 
with the product are also reviewed.  All software components requiring 
licenses are verified.  The product is placed under SCM control. 

This process has clearly improved over time and is now easy to repeat; however, 
determining the quality of the third-party product and coping with hidden designs during 
execution remain problems today.  The Joint Targeting Toolbox (JTT) provides an excellent 
example.  The services use this application to generate the Joint Priority Integrated Target List 
(JPITL).  JTT, which is designed to support classified operations at the JTF level, works 
extremely well in standalone mode, but when forced to operate in a collaborative and distributive 
mode among the different combat components it is slow, erratic, and not user friendly.  To make 
it function properly within TBMCS, LM had to use brute force to make the software interface 
with the other system components. 

The real problem with third-party integration is that the prime contractor does not have 
control over the configuration of the product.  This forces the government to broker changes to 
the product when issues arise, which often results in delays and increased cost.  In the abstract, 
the requirement to use the DII COE as a common software infrastructure represented a worthy 
goal; unfortunately, the infrastructure was slow to mature and could not keep pace with 
commercial information technology, making integration very difficult and expensive.   

LM’s standard systems engineering process focuses strongly on product teams (see 
Figure 3-13) [7].  Gregg Hinchman, former chief architect, stated, “ …this is the first program 
where we (LM) made an effort to not distinguish between system engineering and software 
engineering … We instituted IPTs [integrated product teams] … We became product focused … 
We lost the system engineering activities vs. the software engineering activities and [they] 
became product engineering activities…”3 In essence, the system engineers were embedded in 
the development IPTs at the subcomponent level.  LM did ask the program office to fund 12 
systems engineers to assess performance, but the request was denied due to funding constraints.   

                                                 
3 Gregg Hinchman, personal interview with the author, __ November 2003. 
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LM performed system testing and string testing, but the tests did not exercise concurrent 
processes at the system-of-systems level to assess overall system performance.  This failure can 
be directly attributed to the lack of a system CONEMP. 

Figure 3-13.  Product Timeline 

Managing the external system interfaces on TBMCS is very difficult.  The government 
and LM systems engineering team has an Interface Control Working Group [11], jointly chaired 
by the government and contractor, to deal with this issue.  Figure 3-14 illustrates the process.  
The intent is for TBMCS to manage the interface with its counterpart systems by controlling two 
documents.  The first document is the Interface Control Drawing (ICD), which defines the 
functional and technical requirements of the interface.  The second document is a Memorandum 
of Agreement that describes the program management and configuration control of the interface. 

In practice, program synchronization is exceedingly hard to achieve.  Often a program’s 
schedule slips; therefore, any system that releases an update to the interface must be backward 
compatible.  In some cases, when the systems affected by a change must all update at the same 
time, a vertical release is required.  Synchronizing a vertical turnover can be very complicated, 
especially for complex interfaces such as Link 16.   
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Figure 3-14.  Change Process for Current and Future TBMCS External Interfaces 

The most extensive integration in TBMCS involves data interoperability.  TBMCS has 
two main databases:  the Air Operations Data Base (AODB) and the Intelligence Server Data 
System (ISDS).  The AODB is built according to the USMTF standard, which not only governs 
text format but also defines the rules for the ATO and ACO.  All the military services adhere to 
this standard, which is typically updated on an even-year basis for planning purposes.  For 
example, TBMCS V1.0.1 was released with USMTF’00.  The subsequent release provided 
USMTF’02, which had a richer definition for the ACO and provided more geometric shapes for 
restricted airspace zones (also known as Airspace Space Control Measures).  The JCS C4 
Directorate (JCS/J6) manages the standard and holds interoperability working groups to control 
and update it.  For the most part, the USMTF standards are backward compatible and 
interoperability in the operational theater is very good. 

The ISDS contains the Military Intelligence Database (MIDB) maintained by the Defense 
Intelligence Agency (DIA).  The MIDB is the national database for worldwide targets of 
opportunity.  DIA updates it every six months.  This creates difficulties for TBMCS.  Typically a 
TBMCS release takes place every 18 months; hence, its ISDS server could be three releases 
behind.  This can result in interoperability problems, some of which require emergency patches 
to fix incompatibilities.   

As noted, TBMCS is migrating from a client/server object request broker architecture to a 
Web-based, N-tiered information services architecture.  The integration strategies for these two 
types of systems are very different.  In the client/server architecture, the software applications are 
tightly coupled to a common software infrastructure and brute force is often the only method for 
integration.  By contrast, the Web approach is loosely coupled and supports open standards that 
facilitate options for third-party integration.  As the publish/subscribe method gains popularity, 
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the number of point-to-point interfaces will decrease; thus, the burden of interface management 
should lessen as well.   

3.5 Learning Principle 5 – Validation and Verification 
The lack of a firm requirements baseline made validation and verification 
very difficult.  The program was schedule driven and often ran parallel test 
processes with out clear measures of success.  Not being able to replicate 
the operational environment prior to acceptance test created severe 
problems. 

The contractor and the government share responsibility for TBMCS verification and 
validation.  Figure 3-15 depicts the process and relationships [4]. 
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Figure 3-15.  TBMCS Test Relationships 

The test methodology supports a building block approach for the integration of a family 
of systems, culminating with an operational test assessing critical operational issues (COI).  The 
test process follows four major steps or events.  For the most part the processes are serial, except 
when external influences compress the schedule and force parallelism in the process, which 
typically results in unacceptable performance.  The first major test process starts with the 
contractor verifying and validating the system requirements defined in the SSS.  In the case of 
TBMCS, LM carries out a complete functional decomposition and generates a test case for every 
system requirement.  This quintessential building block approach progresses from unit-level 
testing through subsystem testing, which leads to system integration testing that includes third-
party products, and culminates in system-level testing.  LM tests performance and external 
interfaces along the way as appropriate, but these are usually evaluated as part of the system-
level test.  Development IPTs carry out the relevant unit-level, subsystem, and integration tests; 
an independent test organization within LM performs the system-level testing.  Initially, the test 
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organization reports to the version development manager, but after two operational test failures, 
the test organization reports directly to LM’s program manager.  After the contractor has 
completed the system and interface testing (to the extent possible), the government and 
contractor hold a Government In-Plant test to evaluate performance and assess system maturity 
prior to the formal Development Test and Evaluation (DT&E) run by the government. 

In the sprit of acquisition reform, the Air Force exercised minimal oversight of the 
contractor’s test procedures:  representatives of the SPO were invited to watch the tests, but did 
not comment on or approve the test cases and procedures.  However, the contractor’s and the 
government’s test cases did not always align, and sometimes the government test community and 
the contractor exercised the system differently.  As it happened, testing in the contractor facility 
had serious shortcomings, of which the most important was that the tests did not accurately 
represent the operational environment.  Hardware limitations and restricted access to external 
wide area communications and live interfaces meant that the contractor could never replicate 
how the system would operate in the field.  These limitations had a direct impact on performance 
testing and the ability to assess the system’s overall operational effectiveness and suitability. 

Early in the program, the live interfaces and performance were not tested prior to formal 
government test events.  This has since changed, and the contractor and the government now 
perform a field test prior to the formal government test.   

The second step in the test process was the government-run DT&E.  A Combined Test 
Force (CTF), with representatives from each of the services and the contractor, performed shared 
testing and provided independent reporting for the different services.  For developmental testing, 
the Air Force test agency was the 46th Test Squadron; for the Navy it was Space and Naval 
Warfare Systems Command; for the Army it was the Army Test and Evaluation Command 
(ATEC); and for the Marines it was the Marine Corps Systems Command. 

TBMCS development testing starts in plant and migrates to field test over the span of six 
months.  The government runs the test, drawing on contractor support for discrepancy analysis 
and trouble shooting.  The test is based on the contractor’s system test cases, but has a stronger 
operational flavor and a more realistic operational environment. 

Initially, the contractor’s system test and government’s development test for TBMCS 
(without a field test) were carried out in parallel and led to an operational test, which the system 
failed.  The process has since changed.  The tests are now run serially and build upon each other, 
culminating in a developmental field test.  The third and fourth steps constitute the operational 
test. 

TBMCS used the same CTF concept as in developmental testing, but this time the service 
operational test agencies led the test event.  The Air Force’s test agency was the Air Force 
Operational Test and Evaluation Center (AFOTEC), the Navy’s was the Operational Test and 
Evaluation Force, the Army’s was ATEC, and the Marines’ was the Marine Corps Operational 
Test and Evaluation Activity.  Depending on the level of change and associated risk, the test 
event was either a combined development test/operational test (DT/OT) or an MOT&E.  The 
original plan was to test the core over three evolutionary releases, each release increasing in 
capability, with the third release undergoing the Title 10 USC operational test.  When the system 
was five years late and had failed the first operational test, the approach changed to test V1.0.1 as 
the core system baseline. 
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There was tremendous political pressure to make TBMCS the system of record (SOR) for 
the year 2000.  At the time of the OT&E, TBMCS was three years late in delivery and the Air 
Force wanted desperately to deploy the system in the field and retire CTAPS.  Therefore, the 
fundamentals for planning systems engineering tests were completely compromised for the first 
operational test, called a Joint Functional Acceptance Test.  To say the least, the events leading 
up to operational test were not based on sound systems engineering principles. 

• The tests did not adhere to the entrance and exit criteria. 

• The test events did not build on each other. 

• The baseline continually changed with software modifications. 

• The live interfaces were not tested. 

• The contractor had never tested the system configuration, especially the 
communication infrastructure and connectivity, in an operational context. 

• The contractor had tested the system at the QRP level, but the operational test was at 
the TRP level; as a result, no one could guarantee the system performance. 

• The testing events ran in parallel, meaning that LM was running its 600-plus system 
test cases while the government was carrying out its DT&E. 

• User expectations varied from service to service. 

Needless to say, the system never had a chance to pass. 

After TBMCS failed the operational test, the SPD used a risk management tool called a 
red team to investigate the issues, derive lessons learned, and recommend a way ahead for the 
next operational test.  The red team was composed of senior military officers, DoD contractors, 
and representatives of FFRDCs.  The team made six specific recommendations:   

1. Lock down the baseline and gain consensus on the capabilities. 

2. Provide more rigor and discipline in the systems engineering process. 

3. Re-baseline the schedule and make the test events serial, with entrance and exit 
criteria. 

4. Allow the contractor to test the system in an operational field setting. 

5. Formalize the operational test process. 

6. Manage the risk at the officer (O-6 and above) level. 

All six recommendations were accepted. 

To manage the risk leading up to the next test event, the SPO adopted AF-MAN 63-119, 
Preparation for Operational Test [12], as a template for preparing the system for operational 
test.  Under this new structure, AFOTEC could not start the system test until the PEO certified 
the system was ready.  In turn, the PEO would not certify the system for operational test until the 
SPO lead engineer certified the system was technically ready for OT&E.   

The basic tenet was that TBMCS had to be able to perform the minimal legacy Air 
Operations Functions carried out in AOCs.  No new functionality would be tested.  Figure 3-16 
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breaks the COIs down into MOEs and MOPs.  These clear definitions created a path that the 
contractor and test community could follow. 
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Figure 3-16.  Mission-Essential Task (MET) Decomposition 

Once the functionality was agreed upon, which was no easy task, the system baseline was 
locked down prior to the start of in-plant development test.  Any changes had to be validated by 
a formal configuration control board chaired by the SPD and lead engineer.  Most changes at this 
time remedied software deficiencies.  The schedule was re-baselined and the test events were 
serialized to build on each other, with specific entrance and exit criteria.  Additional test events 
were incorporated in the schedule to allow the contractor to test the system in an operational field 
setting. 

The contractor tests and DT&E, including a field test, were all successful.  All 
stakeholders were elated that the system was truly ready for operational test – at least that was 
what they thought.  AFOTEC suspended the operational test because of a contention problem 
with the intelligence database.  The intelligence cell could not produce the target list in the 
prescribed time because the database locked up when the data was accessed from different 
applications.  AFOTEC delayed the test to let the contractor isolate and correct the problem. 

The problem resulted from a design flaw that was not discovered until OT&E because 
that test represented the first time the system was exercised under real-world conditions, meaning 
that parallel activities needed access to the database.  Moreover, the intelligence product suite 
was GFE from the GCCS, used primarily by the Navy, and had not been tested at the scale the 
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Air Force was using:  the Air Force had 30 target analysts, while the Navy only had 8 or 9.  The 
DT&E field test also had not stressed the system in a way that mirrored real-world conditions, 
because the processes were exercised serially, not in parallel.  Therefore, a major lesson learned 
in TBMCS was the need to exercise the system in a true battle rhythm, rather than using test 
cards and canned scenarios as was done in the contractor’s facility.   

After the first OT&E, the SPO provided tighter oversight and established a strict risk 
management policy.  In addition, the SPO developed a CONEMP and helped the contractor 
redesign its test cases to ensure the performance testing reflected the level at which the system 
would be used for both the AODB and the ISDS.  The SPO also created another test event called 
a combined DT/OT.  The DT portion was similar to previous DT events, but this time an 
operational test was added that would be conducted at the same scale as the Title 10 test.  In 
addition, the contractor was allowed to participate in the test.  The timeline and test events 
leading up the operational test are depicted in Table 3-1 [8]. 

Because the users in most cases did not know the basics of C2 for air operations, the 
training basically involved “buttonology”:  press this button to get this result.  Typically it took 
two to three days for the cell chiefs to get their cells operating at battle rhythm precision.  Also, 
the TTPs and CONOPS varied depending which numbered Air Force was at the test, so 
obtaining repeatable results was difficult at best. 

Finally, TBMCS passed its operational test and was declared the system of record for the 
JFACC to plan, execute, and manage air operations in a theater of war.  Thus, another valuable 
lesson learned was the importance of having the same operators at both tests and giving them 
system spin-up time. 
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Table 3-1.  MOT&E Timeline 

EVENTS DATES 
Ver 1, In-plant Design Evaluation (IDE) Build 3 Dec 97 
Ver 1, IDE Build 5 May-Jun 98 
Ver 1, Build 6.3 In-Plant Testing Nov 98 
Ver 1, FDT&E Phase 1 (Build 7.0) Dec 98  
Ver 1, FDT&E Phase 2 (Build 7.1) Jan-Feb 99 
Ver 1, OT/JFAT(Build 7.2) Feb-Mar 99 
Ver 1.0.1 Build 2.1.1 In-Plant Testing Jul 99 
Ver 1.0.1 Build 2.1.1 Infrastructure Test Jul-Aug 99 
Ver 1.0.1 Build 2.1.2 Combined DT/OT Sep-Oct 99 
Ver 1.0.1 Build 2.1.2 DT/OT 13 Sep – 17 Oct 99 
Certification of System Readiness for MOT&E 21 Dec 99 
Ver 1.0.1 MOT&E System Admin Training 8 – 17 Nov 99 
Ver 1.0.1 MOT&E Infrastructure Setup 29 Nov – 12 Dec 99 
Ver 1.0.1 MOT&E Operator Training 15 - 20 Jan 00 
Final Test Readiness Review for MOT&E 21 Dec 99 
Test Team Training 21 Jan 00 
Ver 1.0.1 MOT&E Ver 1.0.1 Build 2.1.3 Execution 22 -31 Jan 00 
Deficiency Review Board 15 Feb 00 
Ver 1.0.1 MOT&E ISR 16 Feb 00 
Government In-Plant Test 16 – 21 Apr 00 
Government In-Plant Regression Test 16 – 20 May 00 
Ver 1.0.1 Build 2.1.3.5 System Build and Configure 10 – 26 May 00 
User Validation 31 May – 2 Jun 00 

Future Events:  
Field Development Test 3 – 10 Jun 00 
System Reconfigure (USN and USMC) 28 Jun – 12 Jul 00 
Final System Checkout 13 – 16 Jul 00 
MOT&E Dry Run 16 – 22 Jul 00 
Go/No-Go Decision 24 Jul 00 
MOT&E Resumption 25 – 31 Jul 00 
Deficiency Review Board 15 – 18 Aug 00 
Ver 1.0.1 MOT&E ISR 22 Aug 00 
Ver 1.0.1 MOT&E Final Report 16 Nov 00 
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4.0 SUMMARY 
The lessons learned from TBMCS can be directly applied to other software-intensive 

programs that require the integration of vast numbers of third-party products with GFE, such as 
hardware and communications.  A key lesson is that there is no substitute for a well-defined 
systems engineering process.  In the case of TBMCS, external influences drove a relaxation of 
discipline and rigor on the systems engineering process.  In fact, the need for rigor and discipline 
in the process is even greater when the program lacks sufficient detail in the requirements, 
architecture, and system design, or when the contractor and government underestimate the 
complexity of software reuse and third-party integration, as demonstrated in V1.0.1.  Giving the 
contractor TSPR when over 90% of the program content is GFE is a flawed strategy.  The 
contractor cannot be held accountable for performance if the contractor does not control all of 
the system components that affect performance.  Perhaps having performance defined as goals 
instead of requirements was the only possible approach in this particular case, but it should 
certainly not be adopted by other programs as a standard. 

The original approach of evolving the system’s baseline over three software releases 
never was implemented.  A key lesson was that an evolutionary approach will only work once a 
baseline is established.  The pressure from the user community to first fix the legacy system 
(CTAPS) greatly impaired the program, resulting in a three-year schedule slip and budget 
overruns totaling tens of millions of dollars.  From the start, the program was always trying to 
catch up to the original plan.  Then, continued pressure from the user community to field V1.0.1 
basically forced relaxation of test entrance and exit criteria, resulting in a failed operational test.  
Testing a complicated system takes time and the process needs to be serial, with well-defined 
entrance and exit criteria. 

The lessons learned from the difficulty in fielding V1.0.1 had a very positive impact on 
the program’s current systems engineering environment.  TBMCS systems engineering processes 
have evolved to become mature and repeatable.  As the TBMCS program developed, roles and 
responsibilities shifted between LM and the government.  They became predominantly shared 
functions after the core baseline, V1.0.1, passed operational test and was approved for system 
fielding in October 2000.  If portrayed in the Friedman-Sage context, all nine F-S processes 
would be seen as shared between the government and contractor.  The degree of responsibility 
varies for each process, but the overall process is orchestrated as a team approach.  The 
operational capability of TBMCS in Operations Enduring Freedom and Iraqi Freedom 
demonstrates the success of the current approach, as does the contractor’s ability to field four 
subsequent releases in the short span of three years since the release of V1.0.1.  The key lessons 
learned for the systems engineering processes requirements, architecture/design, integration, and 
verification/validation are described below. 

Lessons Learned:  Requirements 
Some of the lessons learned from the development of V1.0.1 are: 

• The government cannot expect the contractor to control the system and functional 
requirements baseline, especially when the government will perform DT and OT 
testing. 

• The user must specify the operational requirements and concept of operations. 

• The government must control the system and functional baseline. 
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• The contractor must show complete traceability of all system elements to the 
allocated baseline. 

• Spiral development does not obviate the need for a rigorous and disciplined 
requirements process. 

Since August 2000, when V1.0.1 passed its operational test, the requirements process and 
structure have changed in several ways: 

• LM has a separate architecture/SEIPT that maintains the system-of-systems view and 
reports to the program manager. 

• There is a new requirement IPT representing the joint users, SPO, and contractor 
engineers. 

• TBMCS now has an ORD and a CONOPS.  

• The government owns and controls the requirements. 

• Test is factored in as part of the planning process. 

• The SPO and the contractor manage each upgrade jointly.  

Lessons Learned:  System Architecture and Design 
The V1.0.1 system architecture and design were really dictated by the operational users.  

For example, the direction to use the DII COE and the GCCS requirement came from the Navy.  
Thus, on the one hand, the government gave the contractor free rein; on the other, it dictated to 
the contractor what to do and to use.  The decision to leverage legacy applications with modern 
information technologies created a dichotomy:  some of the mandated products did not directly 
scale for Air Force operations, others proved incapable of operating over the austere 
communication channels used by the Marines and the Navy. 

Software reuse was not as straightforward as originally thought.  The Air Force 
requirements varied from those of the other services and had direct impact on the overall design, 
especially as it related to the DII COE.  For example, analysis showed that the current GCCS 
message processor was not robust enough to handle the message load for an AOC.  After 
considerable and time-consuming attempts to improve the product, LM eventually replaced it 
with a commercial product called IRIS. 

Another major difference was the profile manager.  The Air Force assigned workstations 
by type (e.g., planner 01) and not by username.  This created a tremendous ripple because 
permissions, applications, and alerts were all driven by user profile.  Thus, LM had to write a 
profile manager to meet the Air Force requirements. 

Enough changes were made to the TBMCS software infrastructure to warrant a separate 
baseline – a variant of the DII COE baseline.  The plan to use common products as the system 
infrastructure was flawed and very restrictive, because the COTS upgrade cycle was always at 
least two versions ahead of the TBMCS baseline.  The application baseline was also affected.  A 
particular application requested by the user might be very difficult to integrate into the system 
because it was either not segmented (as required by the DII COE) or its COTS infrastructure was 
more current than that of TBMCS.  This led to extensive overruns in integration cost and 
schedule.  A major lesson learned, therefore, is to use open standards and not to specify 
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particular commercial products as the software infrastructure.  One size does not fit all 
systems!  

It is also essential to understand the maturity of the third-party products specified in the 
system design.  LM’s processes were not quite mature enough to flag immature third-party 
products.  Unfortunately, proof-of-concept demonstrations and user-developed applications did 
not always transition into production-quality products.  LM did use an SDK, but for V1.0.1 it 
was maturing at the same time as the design was evolving.  In some cases, the government would 
direct LM to form an associate contractor agreement, and in especially high-risk cases LM would 
make the developer a subcontractor.  The lesson learned is to build in an assessment process 
that allows the integrator either to build the software application or replace a required product 
with another.  Often the process and schedule did not permit such an assessment.   

The design had the excellent feature of using layers and thus isolating the applications 
from the data.  This facilitated integration of applications, but for V1.0.1 the interface layer was 
immature and difficult to follow.  Therefore, LM had to devote considerable time to debugging 
the infrastructure and the application services layer.  As the system matured and interfaces 
settled down, the design proved very valuable for migration to the N-tiered Web-based 
architecture.  Applications could be replaced with minimal impact on the other applications and 
databases.  The lesson learned is to define the public interfaces up front and make them 
available to the third-party developers.   

Initially, TBMCS did not have a vision that the program could follow.  LM did include a 
top-level vision in its proposal and assumed that the work on TBMCS would proceed according 
to that vision after contract award.  However, the government was more focused on the tactical 
level than the strategic level.  Months after contract award, the government instead directed LM 
to fix and field the legacy system CTAPS.  Three years and 2000 software bug fixes later, 
CTAPS was fielded.  TBMCS never recovered, 70% of the resources had been consumed, and, 
hence, the architecture effort was not funded.  The remaining resources were spent on getting 
TBMCS V1.0.1 tested and fielded as soon as possible. 

In 1999, three years after contract award, the government finally agreed that TBMCS 
needed a vision and a roadmap to achieve the vision.  Jointly, the government and LM built a “to 
be” architecture and defined a roadmap to support Joint Vision 2010.  The architecture provided 
the framework to guide the evolution of TBMCS from the V1.0.1 baseline to its current state.  
LM’s chief architect now ensures that the proposed design is consistent with the defined 
architecture, which serves as a communications tool and is integral to the planning process for 
subsequent releases.  A lesson learned from V1.0.1 was to define a comprehensible architecture 
and to characterize the constraints and configurations of the system.  Migrating from the 
client/server architecture to the N-tiered architecture has truly given TBMCS new life.   

Changes made after V1.0.1 were: 

• Creation of a “to-be” architecture and roadmap for network centric operations, 

• Creation of a shared architecture/systems engineering IPT, 

• Migration from a restrictive common commercial product infrastructure to an open 
system standards approach, 

• Adoption of the publish/subscribe approach to simplify the complexity of the external 
interfaces, and  
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• Publication of a mature SDK for third-party development based on open commercial 
standards. 

Lessons Learned:  System Integration and Test 
The current integration and test processes for TBMCS are entirely shared and well 

integrated between the government and contractor.  The operational test process for TBMCS is 
very expensive and involves many moving parts.  Scheduling a test requires an enormous 
amount of preparation and planning by the government and the contractor.  The cost to run an 
operational test was $5 million.  Getting to the test and not passing is not a good practice to 
adhere to.  Unfortunately TBMCS failed twice (the second time the test was officially 
“suspended,” but essentially the entire test had to be re-run).  There are several lessons learned.   

• The test community never really bought into acquisition reform. 

• The SPO must take ownership in managing the risk for DT and OT.  It does not 
have to run the tests, but clearly has to orchestrate them.  Asking the contractor to 
perform that role was a mistake. 

• System engineering must play a major role in planning the tests and managing 
technical risks. 

• There is no substitute for a well-defined requirements baseline.  Managing user 
expectations on TBMCS capabilities was a nightmare.  Getting everyone to agree on 
the pass/fail performance criteria was a Herculean effort.   

Another major lesson learned is that testing is a building block process.  The processes 
must be run in a serial mode with well-understood entrance and exit criteria.  The test planning 
process for V1.0 was completely overruled because of schedule considerations.  The contractor 
was performing integration tests while the government was running development tests.  Also, the 
contractor could not guarantee any kind of success because the system was being tested in a 
completely unfamiliar environment.  Thus, having the contractor test the system in an 
operational setting is essential.  In the first test for V1.0, the contractor was not able to test the 
integration of the GFE communications infrastructure with the system, which meant that the 
testers could not isolate issues to the system or the infrastructure.  Subsequent tests required that 
the contractor be allowed to integrate the system with the communications infrastructure prior to 
the start of the test.   

Another major lesson learned is to ensure that external interfaces have been fully tested 
in a real-world environment at both the functional and technical levels.  The contractor did not 
have the capability to conduct a live test of the interfaces in-plant.  As a prerequisite prior to the 
start of any operational test, each interface was tested with known inputs and outputs to ensure 
the interface was working properly, but simulation was not always a good indicator of 
performance. 

The final lesson learned is that system developers must understand how the system will 
be employed.  A detailed CONOPS and a corresponding concept of system employment are 
essential.  As described in previous sections, the main processes in building and managing air 
operations overlap; therefore, not testing those processes prior to an operational test was a major 
mistake.  This is where an operational architecture with use cases would have been especially 
beneficial.  The contractor had a good understanding of the processes internal to an operational 
cell (e.g., planning), but did not understand the dependencies and interactions among the cells 
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and the implications for the system.  Unfortunately, this was not discovered until the second 
operational test.  The primary contributors to this problem were the absence of a CONOPS, the 
lack of previous testing in a battle rhythm, and the unprecedented number of users, which far 
exceeded any encountered in DT or system test. 

TBMCS has made several improvements to the test planning since V1.0.1, and the 
program office continues to take a proactive role in managing risk.  The processes are now serial.  
Entrance and exit criteria for each are well understood.  Stress testing is done in DT and is 
representative of the real operational load, to include interaction among cells.  Interfaces are 
tested live as a prerequisite.  Finally, field test is part of the contractor and DT testing prior to 
operational test.   
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Appendix 1 

Completed Friedman Sage Matrix for TBMCS 

Table A1-1.  The Friedman-Sage Matrix for TBMCS 
Concept Domain Responsibility Domain 

 1. SE Contractor 
Responsibility 

2. Shared Responsibility 3. Government Responsibility 

A. Requirements 
Definition and 
Management 

Initially, LM responsible for 
generating the System Segment 
Specification based on legacy 
ORDs and TRD.  The technical 
performance measurements 
were goals and not 
requirements.  , 

Currently, LM and government 
have an SE IPT to define and 
manage requirements for 
current and future releases.  
User has an on-line database of 
operational requirements for all 
stakeholders to access. 

Did not develop a system 
specification.  Defined a TRD 
that specifically directed a 
concept and technology focus.  
No firm requirements baseline, 
lack of detailed CONOPS and 
CONEMP. 

B. Systems 
Architecting 
and Conceptual 
Design 

System architecture defined at 
too high a level, impacting 
development and integration. 
Layering approach very good. 
No "to be" architecture and 
roadmap. 

Jointly developed “to be” 
architecture to support Network 
Centric Operations.  Evolved 
from a C/S and mandated 
products to an N-tiered open 
system standards architecture. 

Mandated use of certain 3rd 
party commercial hardware and 
communication infrastructure 
products.  Mandated products 
immature. Reuse concept good 
in principle, but difficult to 
execute. 

C. System and 
Subsystem 
Detailed Design 
and 
Implementation 

Heavy influence of legacy 
systems, Underestimated 
complexity and maturity of 3rd 
party and COTS products, 
Negative impact of no 
CONEMP on system design. 
Able to evolve baseline to Web 
construct.   

Jointly developed Web-based 
system design: more open and 
flexible, facilitates Cots 
upgrades and 3rd party 
integration. Good user 
acceptance and better 
understanding of risks and 
product maturity.    

Drove initial design and 
immature 3rd party products, 
redirected design to 
accommodate different GFE 
software and hardware 
products, e.g., GCCS-13 and 
Navy hardware. 

D. Systems and 
Interface 
Integration 

System architecture and design 
had negative impact on 
integration.  Internal interfaces 
not well documented, some 
managed by sub-contractors, 
could not replicate an 
operations environment in-
plant. 

LM and government hold joint 
ICWGs; LM able to integrate at 
government facilities prior to 
test; LM can simulate or test 
most interfaces in-plant; LM 
and government have much 
tighter control on 3rd party and 
risk mitigation plans. 

GFE not well controlled, big 
impact on integration, most 
interfaces have ICDs and 
MOAs, communications 
infrastructure not consistent by 
service and by base. 

E. Validation and 
Verification 

LM responsible for system-
level test, test cases, and 
procedure flow from SSS; 
system test at functional test 
executed in serial, not parallel 
as in operational test; test 
environment was problematic. 

Combined test force with 
representation from LM and 
government; integrated test 
plan, each test building off the 
previous; able to determine 
level of testing based on risk 
assessment; LM system test at 
government facilities. 

Responsible for DT and OT; 
combined testing but 
independent reporting for each 
service. Initially no ORD or 
detailed CONOPS; impact on 
test expectations. 

F. Deployment 
and Post 
Deployment 
(post launch) 

Was not able to reproduce an 
operational environment for 
testing and debugging 
purposes. 

Government provides 
operational facilities to support 
contractor integration and test. 

Operational test environment 
did not correspond exactly to a 
real-word environment. Level 
of operational realism 
determined by level of change 
for new system baseline under 
test. 
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Table A1-1.  The Friedman-Sage Matrix for TBMCS 
Concept Domain Responsibility Domain 

 1. SE Contractor 
Responsibility 

2. Shared Responsibility 3. Government Responsibility 

G. Life Cycle 
Support 

Contractor is responsible for 
software licensing, manages a 
two-tiered help desk, and 
provides mobile training teams. 

Mobile training teams, system 
administration. 

Schoolhouse for initial training. 
Government provides all 
hardware and communication 
infrastructure. 

H. Risk 
Assessment and 
Management 

Technical risk managed at the 
lower levels via tech reviews, 
no formal process at the PM 
level; GFE and 3rd party high-
risk items difficult to manage. 

Have a formal joint 
management process between 
LM and the government, 
manage risks at the program 
level and disposition on a 
monthly basis. 

Acquisition reform, initially 
minimal oversight, give LM 
TSPR, increased oversight and 
managed risk at the program 
level for operational test.    

I. System and 
Program 
Management 

Corporate requires a system 
engineering management plan 
for organization process 
reviews and products. 

Run an IPT; contractor 
evaluated on system 
engineering as part of award 
fee; government and contractor 
have joint management plan. 

Supports the initial 
requirements process, 
architecture, design, 
development, test, and risk 
management. 
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Appendix 2 

Author Biography 

JOSIAH R. COLLENS, JR. 
Josiah R. (Josh) Collens is currently the Director of Engineering for C4ISR Enterprise 

Integration at The MITRE Corporation.  He has worked at MITRE for over 15 years, serving as a 
systems engineer on assignments that included the Modular Control Equipment (MCE) system 
for tactical command and control, Primary Simulation Trainer (PST) for Weapons Controllers, 
Peace Shield (an air defense system for the Royal Saudi Air Force), and the Integrated 
Maintenance System (IMDS) for unit-level maintenance.  He was also the Air Force Weather re-
engineering architect and the lead engineer for the Theater Battle Management Core System 
(TBMCS), which provides theater operational air and space planning and management.   

Josh received a Bachelor of Arts degree in mathematics from The Citadel, The Military 
College of South Carolina, in 1982.  He received an academic scholarship to the Air Force and 
was commissioned as an Air Force officer in 1982.  As an active-duty officer he was a computer 
programmer/system analyst for the Joint Surveillance System, which provided air defense for the 
North American continent.  He separated from the Air Force in 1986 after fulfilling his academic 
scholarship obligation.  He then earned his Master of Science in Computer Information Systems 
from Boston University, Metropolitan College, in 1992. 
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Appendix 3 

Acronyms 
ABP Air Battle Plan 
ACC Air Combat Command 
ACO Airspace Control Order 
AFC2ISRC Air Force Command, Control, Intelligence, Surveillance, and  
 Reconnaissance Center 
AFI Air Force Instruction 
AFMC Air Force Materiel Command 
AFOTEC Air Force Operational Test and Evaluation Center 
AOC Air Operations Center 
AODB Air Operations Data Base 
API Application Program Interface 
ASOC Air Support Operations Center 
AT&L Acquisition, Technology, and Logistics 
ATEC Army Test and Evaluation Command 
ATO air tasking order 
ATO Air Tasking Order 
C2 command and control 
C4ISR command, control, communications, computers, intelligence,  
 surveillance, and reconnaissance 
CAOC Combined Air Operations Center 
CIS Combat Intelligence System 
CM configuration management 
CMM Capabilities Maturity Model 
CONEMP concept of employment 
CONOPS concept of operations 
CORBA Common Object Request Broker 
COTS commercial off-the-shelf 
CTAPS  Contingency Theater Automated Planning System 
CTF Combined Test Force 
DAA Data Access Agents 
DIA Defense Intelligence Agency 
DII COE Defense Information Infrastructure Common Operating Environment 
DISA Defense Information Systems Agency 
DoD Department of Defense 
DT Development Test 
DT&E Development Test and Evaluation 
ESC Electronic Systems Center 
FLEX Force Level Execution 
GCCS Global Command and Control System 
GFE Government-Furnished Equipment 
GOTS government off-the-shelf 
ICD Interface Control Drawing 
IDL Interface Definition Language 
IPT  integrated product team 

48 



ISDS Intelligence Server Data System 
JCS/J6 Joint Chiefs of Staff, Command, Control, and Communications  
 Directorate 
JFACC Joint Force Air Component Commander 
JTF Joint Task Force 
JTT Joint Targeting Toolbox 
KLF Key Legacy Function 
LM Lockheed Martin 
LM-IS&S Lockheed Martin Integrated Systems and Solutions 
MAJCOM Major Command (Air Force) 
MCF Mission Critical Function 
MET Mission Essential Task 
MIDB Military Intelligence Database 
MOE measure of effectiveness 
MOP measure of performance 
MOT&E Multi-Service Operational Test and Evaluation 
MTT Mobile Training Team 
ORD Operational Requirements Document 
OSD Office of the Secretary of Defense 
OT Operational Test 
OT&E operational test and evaluation 
PC personal computer 
PEO Program Executive Office 
PMD Program Management Directive 
POC point of contact 
QP Quality Point 
QRP Quick Response Package 
RFP request for proposals 
RPT Requirements Planning Team 
SAF/AQ Air Force Chief Acquisition Executive 
SAIC Science Applications International Corporation 
SDIPT Spiral Development Integrated Product Team 
SDR System Design Review 
SEIPT System Engineering Integrated Product Team 
SEMP Systems Engineering Management Plan 
SOA service-oriented architecture 
SOR system of record 
SPD System Program Director 
SPO System Program Office 
SPR Software Problem Report 
SRR System Requirements Review 
SSS System Segment Specification 
SVRD System Version Requirements Document 
TAC Tactical Air Command (now ACC) 
TBMCS Theater Battle Management Core System 
TRD Technical Requirements Document 
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TRP Theater Response Package 
TSPR Total System Performance Responsibility 
USMTF United States Message Text Format 
VPN virtual private network 
WCCS Wing Command and Control System 
Y2K Year 2000 
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Appendix 4 

Background and History of TBMCS 

Project Genesis/Origin 
The genesis of TBMCS dates back to lessons learned from Desert Storm in 1991.  

Generating and disseminating the daily 3000-sortie air tasking order (ATO) for that conflict was 
laborious and very time consuming.  Moreover, the Air Force could only deliver the ATO to 
other components, specifically to maritime components on aircraft carriers, by flying hard copy 
to them via helicopters.  The applications used at the time were not battle tested and could not 
scale to the level of war experienced in Desert Storm.  Most of them had been developed via 
limited research and development efforts initiated by the Major Commands (MAJCOMs) or 
research laboratories. 

After the end of the conflict, DoD formed a Tactical Battle Management General Officer 
Steering Group, composed of representatives from the operational commands, to improve 
tactical C2 over the practices used during Desert Storm.  The group identified shortcomings and 
provided a roadmap for theater C2 [15].  On the basis of these findings, Tactical Air Command 
(TAC) started an in-house development program (using Operations and Maintenance funds) to 
build a system called Contingency Theater Automated Planning System (CTAPS).  The primary 
function of CTAPS was to construct large ATOs and disseminate them quickly to the other 
service components and aircraft wings.  Specifically, the system was to automate and integrate 
airspace deconfliction, air battle planning, and ATO generation, and automatically disseminate 
the ATO and Airspace Control Order (ACO).   

Originally, CTAPS was to be the umbrella program, with its key components derived 
from previous software systems:  the Computer Assisted Force Management System and 
Airspace Deconfliction System.  Follow-on components included two applications developed by 
the Air Force Research Laboratory at Rome, New York:  the Advanced Planning System and 
Force Level Execution (FLEX). 

In 1992, when TAC became ACC, the director for requirements recognized that CTAPS 
was too big and complicated for a using command to manage as an in-house project and 
recommended that it be transitioned to AFMC.  ESC assumed ownership and established a 
formal program office in 1993 under the direction of the C2 PEO.  Because ACC wanted the 
capability developed and fielded as soon as possible ESC retained Science Applications 
International Corporation (SAIC), the original developer under TAC, after the transition.   

The C2 PEO, John Gilligan, had a much broader vision for CTAPS.  He wanted it to be 
the all-encompassing theater C2 system, and believed that industry should have the opportunity 
to compete for this system.  In mid-1993, he issued a Program Management Directive (PMD) for 
a system called Theater Battle Management Core Command and Control System.  The PMD 
called for program consolidation and the resources necessary to pay for a standardized, secure, 
automated C2 decision support system that would be deployed worldwide.  The systems to be 
consolidated were the Wing Command and Control System (WCCS), CTAPS Command and 
Control Information Processing System – a system built for Air Mobility Command, and the 
Command Tactical Information System – a system developed by the 11th Air Force.   
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Figure A4-1.  Initial Intent of Program 

Unfortunately, the consolidation never took place and legacy systems continued their 
separate evolution, which had a direct impact on the development of TBMCS.  In the course of 
developing the Request for Proposals (RFP) for the system originally envisioned, ESC changed 
the consolidation and integration strategy.  The final acquisition strategy encompassed three 
systems:  CTAPS, WCCS, and an intelligence system called Combat Intelligence System (CIS) 
(see Figure A4-1 above).  In addition, the ability to reuse software applications across a common 
infrastructure became a key program/design driver.  As the program started to crystallize and the 
acquisition Program Element was established, the name changed again to Theater Battle 
Management Core System. 

Timeline of the TBMCS Program 
TBMCS development proved long and arduous.  The original acquisition strategy called 

on the contractor to deliver three increments with increasing capability in the years from 1995 to 
2001, culminating in operational test after the third release. 

External influences drive the decision process in most large-scale and highly complex 
acquisition programs, and affect the program schedule for both technical and programmatic 
reasons.  TBMCS was no different:  it did not deliver its first version until August 2000.  It 
should be noted, however, that as of 2004 four spirals have been produced. 

Pre-proposal Competitive Phase 
In the summer of 1993, ACC conducted a user evaluation of CTAPS Version 5.0.  The 

test results received mixed reviews.  The ACC users considered the test a qualified success and 
recommended that the SPO fix the reported system anomalies and field the system as soon as 
possible.  The SPO disagreed, believing the contractor was in trouble, and considered the test a 
failure.  The SPO therefore developed a plan to produce a Version 5.1 within one year that would 
be more robust and would solve the problems detected in the summer test. 

Once ACC formally transitioned CTAPS to ESC in October 1993, the emphasis shifted to 
quickly developing and deploying the CTAPS capabilities to the field and then folding those 
capabilities into the TBMCS baseline after TBMCS contract award.  In parallel, the SPO 
developed an acquisition strategy that called for a single contractor to act as the system integrator 
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and enable TBMCS to subsume CTAPS.  That strategy had three key components which had 
long-lasting effects on the SE processes and development of the program.   

First, the SPO decided not to task the contractor with developing a new system, but with 
integrating disparate legacy capabilities by using open standards with a common user interface.  
The architecture should allow flexibility for new capabilities to evolve.  To support this strategy, 
The MITRE Corporation4 developed a technical strategy that used an object-oriented approach 
to facilitate the “plug and play” integration of legacy software applications and enable them to 
run on the government-provided DII COE.   

                                                

Second, the user community did not produce either an overarching CONOPS for how 
TBMCS would be used in the field or a new Operational Requirements Document (ORD).  The 
plan was to modernize the legacy systems and use the existing CTAPS, WCCS, and CIS ORDs 
instead.  By adopting this strategy, the Air Force afforded TBMCS the opportunity to avoid both 
the normal DoD requirements generation and review process and the possibility of becoming a 
joint program, which clearly would have delayed the acquisition. 

Given that the SPO did not have an overarching CONOPS and only had a loose 
collection of legacy ORDs, generating system requirements was difficult at best.  The TBMCS 
SPO director decided not to develop a system specification, but instead generate a Technical 
Requirements Document (TRD) that provided only a very top-level description of how the 
system might be employed and formalized the technical strategy for TBMCS.  Because of the 
ambiguous requirements, ESC built flexibility into the contract to allow the contractor and the 
government to generate requirements by collaborative efforts.  This drove the acquisition 
strategy of enabling the system to evolve by delivering three increments, each with increasing 
capability.  An interesting sidelight, discussed in Section 3, is that the contractor was required to 
produce a system specification, but the key system performance parameters were not binding; the 
contract treated them as goals.  These decisions had a long-lasting impact on the engineering and 
testing of the system.   

Third, as noted above, Air Force acquisition strategy was undergoing reform.  The 
impetus to reform had come from the operational users, who complained that acquisition 
programs were taking too long, and that by the time systems were fielded they either did not 
meet the need, or the threat or the technology had changed or advanced.  To meet this challenge, 
SAF/AQ and the C2 PEO decided to minimize the burden of oversight and allow the contractor 
greater flexibility in producing the system.  Part and parcel of this thinking was to let the 
contractor work more directly with users and allow the requirements to evolve over time.  It 
should be noted that this approach was not accepted by all of DoD, especially by the operational 
test and financial management communities.  This also had significant oversight implications. 

In some respects, TBMCS was clearly ahead of many programs and would not have 
survived without a strong PEO who was willing and able to confront the DoD scrutiny.  TBMCS 
was the “poster child” for acquisition reform:  the SPO would point the contractor in the right 
direction and get out of the way.  The government would provide minimal oversight and use the 
award fee as the incentive for the contractor to perform in accordance with the contractual 
technical, cost, and schedule commitments. 

 
4 MITRE operates the DoD C3I Federally Funded Research and Development Center (FFRDC) and serves 

as ESC’s lead systems engineering support organization. 
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TBMCS Proposal Phase 
On 4 November 1994, ESC released the TBMCS RFP for bids.  Darleen Druyan, 

SAF/AQ, was the Source Selection Authority.  The primary bidders were Hughes Aircraft, 
Logicon, Unisys Eagan, Raytheon/SAIC, and Loral Command and Control Systems.  The PEO 
answered all of the bidders’ questions and continually asked for their inputs and critiques on the 
government approach.  The source selection was novel because the government not only 
evaluated the bidders’ written proposals, but also conducted numerous in-plant visits to assess 
their engineering and management capabilities, especially software integration.  The bidders 
were also required to develop and present a two-day “live demonstration” focused on their 
operational and technical approach to meeting the requirements of the TRD.  An additional 
selection criterion was based on the contractors’ past performance and software maturity level, 
e.g., Software Engineering Institute Capabilities Maturity Model (CMM) rating.  A rating of 3 or 
higher was required because of the legacy reuse strategy, a topic that was explored in Section 3.   

The source selection requested three best and final offers before awarding a Cost Plus 
Award Fee contract in October 1995 to Loral, Colorado Springs, Colorado.  The period of 
performance was six years and the contract had an estimated value of $180 million.  The award 
decision was based on best value to the government:  Loral was 25% less costly and ranked 
second on the technical rating behind Unisys Eagan.  The TRD defined the ceiling of the contract 
as delivering three major versions of the system, but did not preclude the contractor from 
delivering several incremental or maintenance releases. 

Interestingly, during the proposal evaluation period Loral purchased Unisys Eagan, 
requiring Loral to establish a “firewall” between its two competing business units (Eagan and 
Colorado Springs).  In 1997, Loral was in turn purchased by Lockheed Martin, which 
subsequently folded its Colorado Springs operation into Lockheed Martin Mission Systems 
(LMMS), headquartered in Gaithersburg, Maryland.  In January 2004, LMMS was dissolved and 
incorporated in Lockheed Martin Integrated Systems and Solutions (IS&S). 

TBMCS Development Phase 
Immediately following contract award, the user community sponsored several senior-

level meetings to establish TBMCS development priorities.  The main priorities were to shorten 
the ATO development cycle and to integrate operations and intelligence into the ATO process at 
all levels.  TBMCS Version 1.0 was to be fielded 18 months after contract award.  Yet, although 
the acquisition emphasis was supposedly on developing the new integrated TBMCS, the 
government directed LM to make completing and maintaining the latest legacy CTAPS version 
its top priority.   

Five key influences deferred actual delivery of TBMCS until August 2000.  One was the 
legacy system CTAPS.  The operational user was very frustrated with the performance of 
CTAPS 5.1, wanted improved capability immediately, and did not want to wait for the first 
version of TBMCS.  The SPO, at the direction of the PEO, requested LM to assume 
responsibility for completing the in-process development of CTAPS Version 5.2 and for fielding 
and maintaining the system.  As a result, the contractor was forced to shift a tremendous portion 
of the resources planned for TBMCS to completing CTAPS 5.2, which was finally fielded in 
March 1997.  This change in direction cost TBMCS three years in schedule and about 70% of its 
available resources. 
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The second major influence was the requirement to integrate TBMCS into the DII COE 
and align it with Global Command and Control System (GCCS) applications.  Both the DII COE 
and GCCS were very immature, which required LM to hire the Defense Information Systems 
Agency’s (DISA’s) contractor as a subcontractor to make necessary fixes to the DII COE. 

The third influence was the immaturity of many of the third-party software applications.  
Integrating these applications demanded extremely high levels of resources.  Occasionally, LM 
had to reduce applications in functionality or replace them with other products to achieve 
integration and operational capabilities. 

The fourth major influence was requirements creep.  The SPO never really established a 
firm baseline until after TBMCS failed its first major operational test.  The System Program 
Director (SPD) described it as TBMCS “trying to solve world hunger.”  

Last, the program was completely schedule driven.  The operational community exerted 
tremendous pressure for TBMCS to be the Year 2000 (Y2K) SOR rather than the current system, 
CTAPS.  The government therefore forced the contractor to conduct early operational testing, 
despite knowing the system was not ready.  This basically violated the fundamental systems 
engineering principles of effective test planning, risk assessment, and definition of external 
system boundaries.  The Air Force leadership wanted only an assessment of system maturity, but 
the joint test community treated this test as a pass/fail Operational Test and Evaluation (OT&E). 

Understandably, TBMCS failed its first operational test in March 1999.  As a result, the 
government initiated an effort to reinstitute an upgraded CTAPS as the SOR for Y2K 
certification.  TBMCS was also added to the OSD oversight list.  TBMCS was re-baselined, and 
more government oversight was brought to bear, including mandatory oversight by OSD.  The 
SPO adopted AF MAN 63-119, Preparation for Operational Test, processes to assist in 
certifying that the system was ready for operational test [12].  The SPO and the contractor 
adopted joint systems engineering processes to help manage the risk, and developed a bottom-up 
schedule based on the maturity of the system.  In addition, the SPO–contractor team removed the 
parallelism from the schedule and established a serial test process with entrance and exit criteria 
for each test event.   

TBMCS went to its second operational test in January 2000, but the test was suspended 
due to a contention problem affecting the intelligence database.  The problem had not been 
discovered in prior tests because the system had never been exercised in a true battle rhythm, 
with the targeting and execution processes operating in parallel.  The SPO then applied even 
more government oversight and established a zero risk tolerance approach.  The SPO chief 
systems engineer assumed responsibility for the technical integrity of the system and for 
recommending when the PEO should certify the system for operational test.  With LM help, the 
SPO developed performance tests that reflected a realistic operational battle rhythm.  These 
became part of the formal development test process that TBMCS would have to pass before 
proceeding to Multi-Service Operational Test and Evaluation (MOT&E). 

The operational test resumed in July 2000 and TBMCS passed.  TBMCS version 1.0.1 
received a favorable fielding decision by the JCS/J6 in October 2000 and was designated the 
SOR.   

Shortly thereafter, the Air Force decided that TBMCS should become Web enabled and 
migrate from a UNIX platform to a personal computer (PC) end-user (client) device.  The Air 
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Force also adopted a new development methodology under which the SPO delivers spirals of 
capability (which some would say was the original development concept).  This process has 
proven very successful, as TBMCS is now producing its fourth spiral in less than four years.  
TBMCS also is leading the way in delivering the latest in Web and information services 
technologies as the system evolves to support network centric warfare. 

Operational Use 
TBMCS is now deployed worldwide as the J6-mandated joint system that the JFACC 

uses to plan, manage, and execute the Air Battle Plan (ABP).  It has demonstrated rich 
functionality:  it can produce a very complicated integrated ABP for execution by the component 
commanders.  Table A4-1 highlights the success TBMCS achieved during Operation Iraqi 
Freedom in terms of sorties planned, managed, and flown.  The size of the ATOs/ACOs 
produced in Operation Iraqi Freedom well exceeded the system performance parameters. 

Table A4-1.  Operation Iraqi Freedom Sortie Count 

Total Sorties Flown 41,404

USAF  
2

4,196

USMC  
4

,948

USN  
8

,945

USA  
2

69

United Kingdom  
2

,481

Australia  
5

65

TBMCS initially was not well received because of the UNIX interface (required by the 
government in the RFP) and the complicated nature of the system.  LM has made tremendous 
progress in simplifying the user interface and reducing system complexity.  Figure A4-2 shows 
where TBMCS is currently deployed to the Combined Air Operations Center (CAOC) at Al-
Udeid in Qatar. 
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Figure A4-2.  Al-Udeid, Qatar – Combined Air Operations Center (CAOC) 
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Deployment and Post-Deployment 
Responsibility for deployment and post-deployment is shared between the government 

and contractor; this topic was covered in Section 3.3, on testing.  Originally, deployment was 
solely a government activity.  After TBMCS failed the first operational test it became apparent 
that the contractor needed access to government facilities to adequately test the system in an 
operational environment.  The process today is very much a shared one.  Depending on the 
amount of change to the baseline, that process will dictate the operational scenario and test 
environment. 

Life Cycle Support 
Although specific steps and tools have been refined since the inception of TBMCS, the 

overall processes related to life cycle deployment and post-deployment support have remained 
stable.  The initial vision of how to field and maintain the system, train users, and provide help 
desk/reachback support has proven effective and thus the process has remained relatively 
unchanged.  The following sections explore the current methodology, highlighting good 
practices as well as areas that could benefit from future focus. 

COTS Licensing 
The TBMCS contractor procures the COTS licenses required to develop, field, and 

maintain TBMCS.  This approach has given the contractor the ability quickly to assess the needs 
of the system from the initial development stage through the life cycle of the product, which 
includes deployment.  The contractor can review the current state of deployment sites to make 
early preparations for technology refresh of the products, including upgrades and new COTS 
purchases prior to a system deployment.  LM takes advantage of large quantity purchase 
discounts for the COTS products and applies them to the deployment costs as well as to the 
development, integration, and test environments.  However, despite these discounts and the 
ability to leverage corporate purchase agreements, providing and maintaining licenses at 
worldwide locations does not come with a small price tag.  Labor associated with tracking and 
maintaining software licenses costs less than labor to develop engineering software, but once the 
costs of new license procurements are added, COTS maintenance imposes a comparable expense 
on development. 

This approach can also cause problems, as the contractor is often merely a pass-through 
entity.  Legal stipulations on what is and is not required in the software license agreement create 
a gray area that often requires attention, especially in the case of foreign military sales.  Freeware 
and shareware products also tend to make the licensing exercise more cumbersome, as the 
distributor has no incentive to make changes to the license agreement. 

Kitting and Fielding 

Preparations for a TBMCS fielding involve on-going configuration/data management 
(CM/DM) practices.  LM and the customer compose a fielding priority list in advance of a 
fielding decision to minimize any delay in shipment and to ensure that the rollout plan serves 
destinations with the greatest operational need first.  Lists of points of contact (POCs) at the 
receiving location are updated continuously so that inaccurate data on recipients does not slow 
the fielding of releases, service packs, etc.  Prior to shipment, reference documents, training 
materials, and software baselines are appropriately marked, prepared, and shelved for the 
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fielding decision.  In this way, CM is maintained for all spirals, service packs, and COTS/GOTS 
for tracking purposes as well as to ensure the ability to ship efficiently and in a timely fashion. 

Training 
The TBMCS program approaches training from the perspective of getting the most 

impact from the limited funding available.  As a result, training does not reach everyone who 
needs it and more robust training materials could be developed if the funding profile were 
increased. 

Development of training materials lags the software development cycle only briefly.  
Training developers attend QP events to remain current with the anticipated new and updated 
applications and to assess impacts to training materials for both Web-based training and Mobile 
Training Teams (MTTs).  They finalize outlines of the material in conjunction with the maturity 
of the application.  However, screen captures are typically not taken until the application is 
complete, which reduces any rework required if screens are altered.  The time between software 
baseline completion and the fielding decision gives training developers a 30-day window after 
fielding to complete their training materials, and they often do so earlier. 

Web-based training is viewed as giving the greatest “bang for the buck,” as materials can 
be mass produced on CDs for distribution at little cost.  Training CDs are produced for each 
spiral release and distributed with the fielding kits. 

MTTs, although costly, provide the most user-specific training possible.  The contractor 
pre-coordinates with the site’s training POC to determine what type(s) of students will attend the 
training session; thus, the contractor can specialize the training modules for the students’ needs.  
In addition, this pre-coordination often lets the instructor know if the site is not familiar with the 
most recent SOR, so that difference training would need to be expanded to include several 
version hops.  MTTs also provide trainers feedback on the quality/quantity of training via end-
of-course surveys.  The valuable input received through these surveys is often incorporated into 
future training modules. 

Research is being conducted into providing new methods of training, such as distance 
learning.  Such an approach is anticipated to be more cost effective, with only a slight reduction 
in quality when compared to MTTs, but at this time data is still incomplete. 

Help Desk 
TBMCS uses a tiered help desk approach to problem resolution for fielded systems.  

Figure A4-3 depicts the decision flow from problem identification through closure.  The TBMCS 
contractor operates as the single Tier II Help Desk.  Rather than describe the flow, which 
functions as designed, this section concentrates on the areas needing further refinement. 

When the ticket originators initially report their problem, they use standardized 
guidelines to assign a priority level ranging from Low to Critical (there are five levels in total).  
Trouble tickets are then placed in the work queue at each help desk level in accordance with their 
priority.  To date, low-priority trouble tickets have not waited inordinately long in the queue and 
sites have not “over prioritized” to get attention to their problems, but in theory either could 
occur if the queue becomes too backed up from the user’s viewpoint.  The advantage of handling 
tickets in this manner is that emergency problems are not caught in the pipeline and receive the 
immediate attention they require. 
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Figure A4-3.  Problem Decision Flow 

Each help desk tier uses its own unique database and numbering system for trouble 
tickets.  Although the different help desks have standardized on the same database platform, they 
do not actively share trouble ticket descriptions and resolutions.  Thus, information potentially 
useful to other sites is not readily available.  In addition, it is theoretically possible that multiple 
help desk locations might be solving similar problems simultaneously. 

Lastly, the Software Problem Report (SPR)/Baseline Change Request process does not 
always work at optimum effectiveness, especially if the problem is specific to one site and 
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requires a significant amount of software coding/design.  Currently, SPRs must be generated by 
the user, sponsored by an advocate, and placed high enough in the priority queue to impel 
changes in implemented software.  Low-priority changes and/or limited funding can prohibit a 
change from ever reaching the cutoff level for software development. 
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Appendix 5 

Risk Assessment and Management 
Risk management for TBMCS evolved from a contractor-only activity to a joint 

government/contractor process.  The original acquisition strategy gave LM total system 
responsibility; the government would reward performance based on a potentially generous award 
fee.  After the series of test failures and schedule re-baselines on the initial TBMCS version, the 
government took a much more proactive role in assessing and managing risk for the program.  
Finally, after the completion of the V1.0.1 operational testing in August 2000, a shared process 
was developed for TBMCS, which remains in use today.  Figure A5-1 shows this shared closed-
loop process. 
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Figure A5-1.  TBMCS Program Risk Management Process 

LM risk management was based on a two-tiered approach.  Many of the technical risks 
were managed by the implementing engineering organization at the IPT level and addressed as 
part of the QP Review process.  As the system development progressed through the QP process, 
LM managed risk items implicitly by tracking progress in terms of cost, schedule, and 
performance.  Risks considered to have a high probability of affecting the contractual cost and/or 
schedule baseline were elevated to the program level for program manager cognizance and direct 
participation in the mitigation activities.  It was incumbent on the IPT leaders to determine which 
risks to manage at which level.  Clearly, the program manager did not have time to address every 
technical risk personally. 

Throughout the TBMCS lifecycle, the three major performance risk areas for TBMCS 
were:   

• Floating requirements and user expectation management, 

• Maturity of third-party products, and 
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• Government-provided software infrastructure, system integration, and test. 

At first, because of the early implementation of acquisition reform, contractual system 
performance requirements were expressed only as goals.  LM was committed to satisfying these 
goals and built performance monitoring into part of its QP process.  This meant that LM would 
continually assess performance congruent with the software build schedule, but at the 
subcomponent level only.  Originally, LM had proposed to the government a 12-person team to 
model and assess end-to-end performance, but the SPO could not afford the proposal and 
rejected it.  Organizationally, LM had two performance engineers positioned in the development 
team, but they did not provide an overarching system view of how the system would operate 
from an end-to-end perspective.   

In several instances, the performance risks were masked and not discovered until very 
late in the version development cycle.  Key contributors to this problem included the lack of a 
formal CONEMP and CONOPS.  Since the legacy requirements and CONOPS from the original 
CTAPS program sufficed for the government, the LM systems engineers were left to extrapolate 
from them how the system would be employed in the real world.  LM system testing was focused 
on single-thread functional testing and not on end-to-end, multi-threaded testing with concurrent 
operational processes.  Unfortunately, LM did not fully exercise the system in the way the user 
would actually employ it, resulting in the latent design flaw in accessing the MIDB (as described 
in Section 3.4).  By the time the problem was fixed the schedule had slipped eight months.  
CONEMPs have since been developed and are exercised as part of the development test process.  
In a lesson to other developments, LM separated the systems engineering organization from the 
development organization to ensure end-to-end performance testing.   

A second major risk area was government-directed third-party applications, specifically 
an application called FLEX.  FLEX was a Rome Laboratory Advanced Concept Technology 
Demonstration to show that the AOC could monitor execution of the ATO.  The concept was 
correct, but the lesson learned from the painful transition from a prototype to a production-
quality application was a very expensive one.  The application provided an automated interface 
between the AOC and the operational flying units, and gave the JFACC near-real-time updates 
on the status of ATO execution.  FLEX worked superbly as a demonstration with a handful of 
users, but could never scale to an upper bound of 150 to 200 simultaneous users.  After three 
years of development at a cost of $20 million, the product was dropped and replaced by an 
application developed in-house by an LM subcontractor.  To minimize risk in integrating third-
party software products, LM published its SDK for vendors to follow.  In some cases, when risk 
was known to be very high or quality was a concern, LM would hire the vendor as a 
subcontractor and contractually require a specific capability and performance.   

In March 1999, after TBMCS failed the first operational test and PEO leadership 
changed, the government took on a much stronger oversight role and began managing risk at the 
program level with all key stakeholders.  As discussed in Section 3.4, the SPO adopted AF MAN 
63-119 as a guideline.  The new PEO wanted tighter control than before and required 
quantifiable metrics for the award fee.  At the time, the program was three-and-a-half years late 
and $40 million over budget, and required more discipline and rigor in the systems engineering 
process.  Some of the specific changes made required a government-run configuration control 
board to control the system baseline and LM to report earned value.  Program performance 
progression and risks were managed at the senior level (O-6) on a biweekly basis; the results 
were used by a second, monthly, management process at the general officer level. 
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Managing the risks and applying more rigor and discipline proved a positive step toward 
passing operational test.  After TBMCS passed MOT&E, the SPO and LM adopted a formal 
shared risk management process documented in a risk management plan.  The contractor and 
SPO now meet on a monthly basis to discuss the risks, mitigation plans, and disposition.  The 
risk management plan gives greater insight at the program manager and chief engineer levels and 
leads to better management of overall system development. 
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Appendix 6 

System and Program Management 
Both the government and LM recognize and support the essential role of systems 

engineering in TBMCS program development and management.  Systems engineering 
performance is an evaluated factor in the TBMCS Award Fee Plan.  LM company policy 
requires a robust systems engineering program, which is critical to achieving and maintaining 
company ISO certification and high CMMI ratings.  Accordingly, the TBMCS Program 
Management Plan specifies systems engineering as a critical element for successful contract 
implementation and assigns responsibilities for ensuring active systems engineering 
implementation. 

The TBMCS Systems Engineering Management Plan (SEMP) provides detailed systems 
engineering guidance specific to the TBMCS program.  It prescribes the management and 
engineering processes for planning, implementing, and controlling the systems engineering 
activities across the TBMCS program.  It is routinely updated to reflect changed and/or new 
policies and practices.  The key elements addressed are: 

• Systems engineering organization, roles and responsibilities, 

• Formal systems engineering reviews and products, 

• Major systems engineering functions and processes, 

• Systems engineering controls, baselines, and boards, 

• Integration of specialty engineering, 

• Metrics, QPs, and status, and 

• Risk management. 

Organizationally, systems engineers are embedded in practically all TBMCS program 
entities.  The Systems Engineering IPT resides at the top level of the program.  The TBMCS 
chief architect, who reports to the TBMCS program director, leads this team and is responsible 
for all systems engineering effort on the program.  The IPT performs the principal engineering 
integration function to ensure unity of technical effort and control of the engineering baseline 
across the entire TBMCS program.  Key IPT responsibilities include: 

• Requirements definition, management, and control; 

• Version planning to include content, prioritization, budget estimates, and design 
reviews; 

• System architecture definition and baseline control; 

• External interface definition, design, and control via Interface Control Documents 
(ICDs); 

• Security engineering; 

• New technology planning and infusion; 

• Specialty engineering; and 

• Trade studies. 
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It is also noteworthy that, in the spirit of the IPT philosophy, systems engineers are 
embedded in each of the software development/integration IPTs to ensure the integrity of the 
system requirements, architecture, and other version baselines.   

The TBMCS organizational structure ensures that systems engineering is formally 
represented in all front-end engineering activities as well as in the software development, 
integration, and test phases of overall product development.  Systems engineering therefore 
serves as a unifying factor across the system lifecycle to guarantee the integrity of the 
requirements, architecture and system performance baselines.   

Systems engineering also serves as a key communications, planning, and issues 
resolution activity both internal and external to the TBMCS program.  The SEIPT, which 
includes members representing the TBMCS contractor, government acquisition SPO, and user 
(AFC2ISRC), was established as an informal body to accomplish technical and programmatic 
(budget and schedule) planning and resolve the difficult issues in advance of the AFI 63-123 
formal Joint Requirements Planning Team and SDIPT activities.  The SEIPT, which meets 
weekly, has proved very effective in resolving the technical and programmatic issues related to 
version planning and implementation in advance of the formal version approval activities that are 
required to initiate contract actions with specific requirements, budgets, and schedules. 

In addition to the TBMCS version-related requirements and design reviews, the SPO also 
requires quarterly Program Management Reviews.  The purpose of these reviews is twofold:  (1) 
assess contract performance against the contract baseline, and (2) review and evaluate future 
plans from both the programmatic and technical perspectives.  The SEIPT is responsible for 
outlining future plans, presenting alternatives, identifying programmatic and engineering issues, 
and providing resource estimates.  Action items are routinely generated from these reviews. 

Systems engineering implementation on the TBMCS program generated several key 
lessons learned: 

• Both the government and the contractor must recognize the need to fully fund critical 
systems engineering activities.  As a key example, in the initial years of the program, 
the government did not provide funding for the SEIPT, but instead embedded funding 
for those critical systems engineering activities in the budget lines for product 
development.  This tended to reduce emphasis on the SEIPT’s advanced planning 
functions and made these activities less than effective.  In the later years of the 
program, the SPO has provided a unique budget line to support the SEIPT, which 
resulted in an extremely robust implementation of these necessary systems 
engineering activities. 

• Version requirements, schedules, and funding must be linked early in the process to 
ensure effective use of the contractor work force and meet user expectations for 
product delivery.  This is a joint government–contractor systems engineering activity.  
Delivering a version product that meets user expectations for functionality, cost, and 
schedule depends upon several key factors in the engineering development cycle:  (1) 
establishing a firm requirements baseline, (2) prioritizing the requirements so trade-
offs can be accomplished, (3) estimating what can be delivered by the contractor 
within the budget and schedule targets, and (4) completing the RFP, proposal, and 
contract authority actions.  The SPO, user, and contractor must work closely together, 
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on a prescribed schedule, to complete these actions or the contractor work force will 
not be used effectively and user expectations will not be met. 

Systems engineering is the glue that holds program implementation together, while 
keeping it on a track consistent with design, functionality, and performance baselines.  It plays a 
key role in both engineering implementation and program management.  Systems engineering 
inputs are critical to the program risk management process.  To implement systems engineering 
activities successfully, systems engineering policies and practices must be documented in a 
program-specific SEMP and then adhered to religiously.  Systems engineers must be embedded 
throughout the program organization to ensure the establishment and integrity of system 
baselines.  The government and contractor must recognize the need to provide adequate 
resources for systems engineering activities throughout the program life cycle.   
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